
Journal of Instruction-Level Parallelism 7 (2005) 1-20 Submitted 10/04; published 1/05

Architecture-Level Power Optimization –

What Are the Limits?

John S. Seng jseng@calpoly.edu

Dept. of Computer Science
California Polytechnic State University
San Luis Obispo, CA 93407

Dean M. Tullsen tullsen@cs.ucsd.edu

Dept. of Computer Science and Engineering

University of California, San Diego

La Jolla, CA 92093-0114

Abstract

This paper explores the limits of microprocessor power savings available via certain
classes of architecture-level optimization. It classifies architectural power optimizations
into three categories, three sources of waste that consume energy. The first is the execution
of instructions that are unnecessary for correct program execution. The second source of
wasted power is speculation waste – waste due to speculative execution of instructions that
do not commit their results. The third source is architectural waste. This comes from
suboptimal sizing of processor structures. This study shows that when these sources of
waste are eliminated, processor energy has the potential to be reduced by 55% and 52%
for the studied SPEC 2000 integer and floating point benchmarks respectively.

1. Introduction

Power consumption and heat dissipation have become significant challenges in the design
of modern high-performance processors. Additionally, mobile and other energy-constrained
processors are expected to provide performance similar to high-performance desktop pro-
cessors.

A significant amount of recent research has sought to reduce the power consumption of
processors, including high-performance general purpose microprocessors. Power consump-
tion can be reduced at many levels, from the circuit level to the application level. This
paper seeks to explore the limits of power reduction available due to optimizations at the
architecture level. This research identifies three broad categories of wasted energy that
either have been, or could potentially be, targeted for reduction. Those categories are
program waste, speculation waste, and architectural waste. The focus of this research is
the reduction of power and energy dissipation in high-performance, high instruction level
parallelism processors. These categories of program waste encompass much of the ongoing
research in architectural power reduction – assuming solutions that do not fundamentally
change the processor or its performance.

Program waste arises when the processor fetches and executes instructions that are
not necessary for correct execution. This includes instructions that produce either dead
or redundant values, or any instruction whose only consumers produce dead or redundant
values. We consider an instruction unnecessary if it produces a dead value or does not affect



Seng & Tullsen

any change on processor state (e.g., the contents of registers and memory). Some examples
of power and performance optimizations that target this type of waste include elimination
of silent stores [1, 2] and dynamically dead instructions [3].

Speculation waste results from speculative fetching and execution of instructions beyond
unresolved branches, inevitably leading to wasted energy when those branches are mispre-
dicted. These instructions are fetched into the processor and consume pipeline resources
and energy, but are never committed and do not change permanent processor state. Exam-
ples of energy and performance optimizations that target this type of waste include pipeline
gating [4] and aggressive branch predictors [5].

Architectural waste results from the static sizing of architectural structures, such as
caches, instruction queues, branch predictors, etc. Memory array structures are often de-
signed to hold a large amount of data in order to obtain good overall performance, but a
given program usually cannot exploit this at all times. Instruction queues are designed with
a large number of entries when often there is little parallelism in the running code. For
performance reasons, these structures are made as large as possible. Making them too small
can also waste power (causing more miss traffic, increasing misspeculation, etc.). This study
examines the power dissipation of caches and instruction queues that are always exactly
the right size. Examples of power and performance optimizations that target this type of
waste include selective cache ways [6] and dynamically resized issue queues [7].

The experimentation and analysis in this paper assumes an aggressive, dynamically
scheduled wide superscalar processor, but many of the results would apply to the same
relative degree to nearly any processor. While it is a limit study, this research does not
encompass the power reduction available from profound architectural changes (e.g., the
difference between a dynamically scheduled processor and a statically scheduled processor),
but rather focuses on a single architecture that adapts in idealized ways to avoid waste.
Because this is a limit study, we make no assumptions about how or to what extent these
sources of waste are avoided.

Among the findings of this research are the following:

• In order to take full advantage of the opportunities to reduce program waste (unnec-
essary computation), we must identify not only the redundant or useless instructions,
but also those instructions which only produce values for the redundant instructions.

• Revolutionary advances (e.g., more than a factor of two or three) will not come without
significant changes to the underlying architecture (the type of changes that violate
the underlying assumptions of this study).

This paper is organized as follows: Section 2 covers related work. Section 3 describes the
simulation and experimental methodology used in our experiments. Section 4 demonstrates
program waste and its associated energy costs. Section 5 describes speculation waste and
quantifies the cost of speculative execution. Section 6 presents architectural waste. Section 7
shows the effect on energy consumption when the three sources of waste are removed. The
paper concludes in Section 8.

2



Architecture-Level Power Optimization – What are the Limits?

2. Related Work

Previous architecture research has identified many of the sources of waste identified in this
paper — those papers include both performance optimizations and power optimizations. In
this section we list both types of previous research.

Program waste occurs when instructions that are either dead or redundant consume
resources within the processor. Prior works have studied particular types of unnecessary
instructions. Specific prior work has targeted dynamically dead instructions [3, 8], silent
stores [1, 2, 9], silent loads [1, 10, 11], silent register writes [8, 12, 13], and predictably
redundant instructions [14, 15]. Each of these works provides a technique for dynamically
identifying and predicting unnecessary instructions. Many of them only study the perfor-
mance gains, typically from eliminating execution of these instructions.

Rotenberg [16] provides a further analysis of unnecessary instruction chains by identify-
ing sequences of instructions that are executed but do not contribute to program correctness.
That work analyzes sequence lengths of unnecessary instructions and proposes predicting
such sequences. The paper proposes eliminating the instruction sequences from the primary
thread of execution and verifying them by another execution context.

Program redundancy also exists in the form of instructions which operate on repetitive
operands. The work by Sodani et al. [17] is a comprehensive study into the repetition
of inputs and outputs of dynamic instruction instances. Our work presents the energy
impact of dynamic instructions with common inputs and static instructions with a small
set of input values. Sodani et al. [15] propose instruction reuse, a performance optimization
which eliminates execution of instructions with repetitive inputs.

Speculation waste occurs when instructions are fetched and executed after a mispre-
dicted branch. These instructions will eventually be flushed from the pipeline without
performing any useful computation. The number of instructions that do not commit is
significant in benchmarks that have many difficult to predict branches.

One approach to solving this problem is to improve the accuracy of branch predictors.
This has been extensively studied. Work that attempts to minimize the energy effects of
misspeculated instructions is much more limited. Pipeline gating [4] addresses the problem
of misspeculation by keeping instructions from continuing down the processor pipeline once
a low-confidence branch has been fetched. By limiting the number of instructions fetched
after an often mispredicted branch, the amount of energy wasted can be minimized. Bahar
et al. [18] present a similar concept. Seng et al. [19] demonstrate that multithreaded execu-
tion [20] conserves a significant amount of energy by relying less on speculation to achieve
performance.

Suboptimal sizing of processor structures exists when hardware structures are inap-
propriately sized, both statically and dynamically, for program behavior and the different
phases of program behavior. One optimization targeted at this phenomenon is reconfig-
urable cache structures [21, 22, 23, 24, 25]. Another general technique to reduce the power
consumption of caches is to power down parts of the cache that are unused [6, 26].

Several papers have proposed techniques for reducing the energy consumption of the
instruction issue logic. A common approach to reducing the energy of the issue queue has
been to dynamically reconfigure the issue window size [7, 27, 28, 29]. The authors note
that most instructions are issued from the head of the issue queue. They propose particular

3



Seng & Tullsen

Benchmark Input Fast forward
(millions)

crafty crafty.in 1000
eon kajiya 100
gcc 200.i 10
gzip input.program 50

parser ref.in 300
perlbmk perfect.pl 2000

twolf ref 2500
vortex lendian1.raw 2000
vpr route 1000

art c756hel.in 2000
equake inp.in 3000
galgel galgel.in 2600
gap ref.in 1000
mesa mesa.in 1000
mgrid mgrid.in 2000

Table 1: The benchmarks (integer and floating point) used in this study, including inputs
and fast-forward distances used to bypass initialization.

implementations of dynamically resized issue queues in order to gain power savings. In
contrast, other work resizes the issue queue on the basis of available parallelism [30, 31].

Another technique to lessen the cost of suboptimal sizing is hierarchical designs. This
approach includes using deeper cache hierarchies [32], as well as hierarchical instruction
queues [33].

Other processor structures for which the analysis framework we apply in this paper is
equally appropriate include the branch predictor, the functional units, and the register file.
Parikh et al. [34] study energy optimizations for branch predictors. Other research proposes
architecture-level optimizations for functional units [30, 35]. Register file optimizations
include hierarchical register files [36].

3. Methodology

Simulations for this research are performed with the SMTSIM simulator [37], used exclu-
sively in single-thread mode. In that mode, it provides an accurate model of an out-of-order
processor executing the Alpha instruction set architecture. The simulator was modified to
include the Wattch 1.02 architecture level power model [38].

The SPEC2000 benchmarks are used to evaluate the designs, compiled using the Digital
cc compiler with the -O3 level of optimization. All simulations execute for 300 million
committed instructions. The benchmarks are fast forwarded (emulated but not simulated)
a sufficient distance to bypass initialization and startup code before measured simulation
begins. Additionally, the processor caches and branch predictor are run through a warmup
period of 10 million cycles before data collection. Table 1 shows the benchmarks used, their
inputs, and the number of instructions fast forwarded. In all cases, the inputs are taken
from among the reference inputs for those benchmarks.

4



Architecture-Level Power Optimization – What are the Limits?

Parameter Value

Fetch bandwidth 8 instructions per cycle

Functional Units 3 FP, 6 Int (4 load/store)
Instruction Queues 64-entry FP, 64-entry Int

Inst Cache 64KB, 2-way, 64-byte lines

Data Cache 64KB, 2-way, 64-byte lines

L2 Cache (on-chip) 1 MB, 4-way, 64-byte lines

Latency (to CPU) L2 18 cycles,
Memory 300 cycles

Pipeline depth 8 stages

Min branch penalty 6 cycles

Branch predictor 21264 predictor

Instruction Latency Based on Alpha 21164

Table 2: The processor configuration modeled.

Details of the simulated processor model are given in Table 2. The processor model
simulated is that of an 8-fetch 8-stage out-of-order superscalar microprocessor with 6 integer
functional units. The instruction and floating-point queues contain 64 entries each, except
when specified otherwise. The simulations model a processor with instruction and data
caches, along with an on-chip secondary cache.

The potential energy savings from eliminating program waste will be largely indepen-
dent of the processor model, because it scales primarily with instruction count. Waste due
to speculation and architectural waste will, to some extent, be particular to the proces-
sor modeled here; however, these results should scale in a qualitative way to a variety of
architectures.

For the experiments involving program waste, a trace of 300 million dynamic committed
instructions is captured. Dynamic instruction instances are then marked in the trace if they
are determined to be unnecessarily executed. Producers for these instructions are also con-
sidered unnecessary and marked if all their dependents are either unnecessary or producers
for unnecessary instructions. In order to capture the dependence chain of instructions, the
instruction trace is processed in reverse order.

In order to model the effect of removing the energy usage of dynamic instruction in-
stances, the trace is used as input during a second simulation run. Care was taken to ensure
that the same instructions are executed for each run of the simulator - this guaranteed that
only the effects of the dead and redundant instructions were being measured. When an
instruction is marked as unnecessary, we emulate it in the simulator but do not charge the
processor for the energy cost of any aspect of its execution.

Because this is a limit study, we do not make assumptions about, or charge the processor
for, the techniques used to exploit the particular phenomenon we study. For example,
one technique to avoid predictably redundant execution is instruction reuse. Instruction
reuse [15] would require energy for access to a reuse buffer, and would primarily save the
power used by the execution units. In our study, we do not account for the energy of the
additional processor structures required; we only remove the energy cost of instructions. In
so doing, we do not limit the results to a particular architectural solution.

5



Seng & Tullsen

4. Program Waste

Many instructions that are executed do not contribute to the useful work performed by
the program. These instructions may include ones which produce values which will never
be used, those instructions which do not change processor state in any way, or which
predictably change program state in the same way. In this work, we quantify the impact
of these redundant instructions on the energy usage of a processor. We start by examining
those instructions that do not perform useful work (either produce dead values or do not
change program state), and study predictably redundant instructions in Section 4.2.

4.1 Unnecessary Instructions

Instructions which do not do useful work for program execution are considered unnecessary.
We classify unnecessary instructions into a number of categories.

Dead instructions (dead in Figures 1 and 2) Instructions which produce dead values
are instructions where the destination register will not be read before being overwritten by
another instruction. In addition, store instructions are also considered dead if the memory
location written is overwritten before being read by a load instruction. A dead instruction
can produce a value which is dead for every execution instance (statically dead, because of
poor instruction scheduling by a compiler) or for select instances (because of a particular
path taken through the code). In both cases, the instruction producing a dead value has
no effect on program correctness and we assume it can be eliminated.

Silent stores (stores) These are store operations where the value stored is the same as
the value already at the address being stored to. Prior research has shown techniques which
identify these instructions and remove them from the instruction stream [1, 2]. Removing
silent stores from the dynamic instruction stream improves performance by reducing the
memory traffic generated by these instructions. In this paper, we quantify the energy effects
of these unnecessary instructions.

Silent loads (loads) These are similar in nature to silent stores. Silent loads are load
instructions where the value being loaded is the same as the value already in the destination
register. Again, these instructions have no effect on program state and correctness, and
therefore can be removed without incorrect program execution. These are a special case
of the silent register instructions, but they are interesting as a sub-category because of the
high performance and power cost of load operations.

Silent register operations Silent integer register operations (sir) are those integer in-
structions whose result is the same as the value already in the destination register. Similarly,
silent floating point operations (sfp) are those instructions where the resulting value is the
same as the destination floating point register.

Silent conditional moves (cmov) These are conditional moves where the condition is
not met and the move does not occur. Because the move is not performed, the instruction
is essentially a null operation and energy is wasted in the fetching and executing of these
instructions. This is the only support for predication in the Alpha ISA. An architecture
with richer support for predication, such as the Intel IA64, would have more opportunities
for removing this waste.

6



Architecture-Level Power Optimization – What are the Limits?

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

cra
fty


eo

n
gcc


gz

ip

pa
rse

r

pe
rlb

mk
tw

olf


vo
rte

x
vp

r ar
t

eq
ua

ke


ga
lge

l
ga

p

mes
a

mgr
id

in
t. a

vg
.

fp
 av

g.

pe
rc

en
ta

ge
 o

f t
ot

al
 e

ne
rg

y 
w

as
te

d
cmov
dead
stores
loads
sir
sfp
all

Figure 1: Processor energy waste due to unnecessary instructions.

The truly redundant operations are the silent register operations, silent loads, and silent
stores. The dead instructions and silent conditional moves are not redundant, but special
cases where their execution has no effect on the architectural state.

In addition to the unnecessary dynamic instructions, the producers of values consumed
by those instructions may also be unnecessary. This is true as long as the produced value is
only used by instructions already deemed to be unnecessary. Since we search the dynamic
trace in reverse order, this can be determined with a single pass through the trace. In
following chains of unnecessary instructions, we only follow register dependences and assume
that values passed through memory are useful.

4.1.1 Program Waste Results

Figure 1 shows the percentage of total processor energy used for the execution of each
type of program waste. The results shown represent the energy waste only due to those
instructions which are marked as unnecessary and does not include the producers for those
instructions. The data is shown for each of the integer benchmarks, the average of the integer
benchmarks, each of the floating point benchmarks, and the average of the floating point
benchmarks. The categories of unnecessary instructions are mutually exclusive except for
the dead category where instructions are marked regardless of their type. The all category
represents accounting for all types of program waste.

For the integer benchmarks, the most significant sources of program energy waste are
due to dead (8.2%) and silent integer operations (7.4%). The eon benchmark wastes more
energy with dead instructions (16.0%) than any other integer benchmark. Removing the
energy costs of silent conditional operations provides little change (0.7% for the average).
For the average of the integer benchmarks the total waste is 20.6%.

7



Seng & Tullsen

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

cra
fty


eo

n
gcc


gz

ip

pa
rse

r

pe
rlb

mk
tw

olf


vo
rte

x
vp

r ar
t

eq
ua

ke


ga
lge

l
ga

p

mes
a

mgr
id

in
t. a

vg
.

fp
 av

g.

pe
rc

en
ta

ge
 o

f t
ot

al
 e

ne
rg

y 
w

as
te

d
cmov

dead

stores

loads

sir

sfp

all

Figure 2: Processor energy waste due to unnecessary instructions and their producers.

For the average of the floating point benchmarks, most of the waste is due to silent loads,
silent integer, and silent floating point operations. Some of the floating point benchmarks
exhibit very little waste for silent floating point operations (art and gap); for the galgel

benchmark, this waste is significant at 30.6%. As with the integer benchmarks, little energy
is wasted on silent conditional moves. The average total program waste for the floating point
benchmarks is 23.1%.

When including the instructions whose only contribution is to produce values for unnec-
essary instructions (Figure 2), the potential energy savings increases significantly. For the
integer benchmarks, the chains of instructions leading to dead and silent integer operations
are the leading sources of program waste. The waste due to dead instruction chains is 14.1%
and the waste due to silent integer instruction chains is 18.8%.

For the floating point benchmarks, silent floating point and silent store instruction
sequences are the leading sources of energy waste. The galgel benchmark has an excep-
tionally large number of unnecessary silent floating point instruction chains (77.4% energy
wasted). For these benchmarks, when counting the producer instructions for the silent
stores, the total energy waste is significant (24.1%). This demonstrates that in the floating
point benchmarks there are long sequences of instructions to compute a store value, and
often that store is silent. In fact, for both integer and floating point programs, the cate-
gory that gained (relatively) the most when including producing instructions was the silent
stores.

It should be noted that the sum of the different sources of program waste are not strictly
additive. Some may be counted in two categories (e.g., an instruction that is both redundant
and dead). In fact, we see a high incidence of this effect when we include the producers,
because many unnecessary instructions are also producers of other types of unnecessary

8



Architecture-Level Power Optimization – What are the Limits?

0

0.2

0.4

0.6

0.8

1

1.2

ref 1 2 3 4 5 6 7 8 9 10
number of previous unique inputs

n
o

rm
a
li
ze

d
 t

o
ta

l 
e
n

e
rg

y


int

fp

Figure 3: Average energy for benchmarks when removing energy of instructions that have
same inputs as one of the last n unique sets of inputs seen by the same instruction.

instructions. We only count these instructions once for the all category. The total can also
be more than additive, because a producer instruction may produce a value which is then
consumed by multiple unnecessary instructions of different types, and is only considered
unnecessary in the case that we are considering all its dependents as unnecessary, and thus
only be counted in the all case.

These results indicate that the potential for energy savings is much more significant
when including the chains of instructions that together produce an unnecessary value. The
actual instructions that produce the value represent only a fraction of the wasted energy.
Considering all unnecessary instructions, the integer benchmarks waste 37.7% of total en-
ergy. The total for the floating point benchmarks is greater at 47.0%.

4.2 Predictable Instruction Redundancy

The previous section examined instructions that had a particular type of redundancy – they
wrote values that were already in the destination location. Another type of redundancy
is instructions which repeatedly produce the same value, or operate on the same inputs.
These instructions are not strictly unnecessary by our previous definition because they
may still change program state; however, there is still potential to exploit this redundancy.
There will be some overlap between this redundancy and the silent register operations, if
an instruction produces the same value and there have been no intervening writes to the
destination register.

Instructions may exhibit either output or input redundancy. We focus on input re-
dundancy rather than output redundancy because instruction reuse (which detects that an

9



Seng & Tullsen

0.0

5.0

10.0

15.0

20.0

25.0

cra
fty


eon

gcc


gzip


parse
r

perlb
mk

tw
olf

vo
rte

x vp
r art

equake


galgel
gap

mesa


mgrid


int.a
vg

.

fp.
av

g.

pe
rc

en
ta

ge
 o

f t
ot

al
 e

ne
rg

y 
w

as
te

d

Figure 4: Percentage of total energy that is wasted due to misspeculated instructions.

instruction is being executed with the same inputs as a prior instantiation [15]) has more
potential than value prediction to save power. Value prediction is a speculative technique
that requires all predicted instructions be executed to check the prediction. In this section,
we explore the potential for power savings when instructions displaying varying degrees of
input operand reuse are eliminated from the instruction stream.

Figure 3 graphs the normalized total energy when removing energy of instructions that
commonly see the same inputs as previous values. In this experiment, if an instruction has
the same inputs as one of the last few unique sets of inputs seen by that same instruction,
then its energy cost is removed. The x-axis represents the number of previous unique
input combinations that an instruction was compared against. Ref indicates the baseline
simulations where the energy costs of all instructions are counted. The graph shows that a
significant amount of energy could be eliminated for instructions that exhibit this behavior.
When comparing instructions only against the inputs of the last instruction instance, energy
was reduced by 27.5% for the integer and 24.2% for floating point benchmarks. When
comparing against the last two unique inputs, these numbers increase to 32.6% for the
integer and 27.6% for the floating point benchmarks.

In a separate experiment, we found that many instructions are actually or nearly stat-
ically redundant. For the integer benchmarks, we found that 5.3% of total energy is con-
sumed by instructions which never see more than one set of operands, and 9.4% is used on
instructions which have only two different sets of inputs.

5. Speculation Waste

Speculative execution enables higher performance on modern processors. For high perfor-
mance, a long pipeline requires the prediction of branch outcomes and the execution of
subsequent instructions. In cases where branches are incorrectly predicted, the misspecu-
lated instructions are flushed from the pipeline and refetching occurs down the correct path.

10



Architecture-Level Power Optimization – What are the Limits?

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

crafty eon gcc gzip parser perlbmk twolf vortex vpr average

pe
rc

en
ta

ge
 o

f c
ac

he
 e

ne
rg

y 
w

as
te

d

dcache

icache

Figure 5: Potential cache energy savings with optimal cache sizing for the integer bench-
marks.

Although there is no program correctness penalty associated with executing misspeculated
instructions, there are energy costs associated with the instructions.

Figure 4 shows the effect on processor energy usage of misspeculation. In this experi-
ment, we simulate the benchmarks two times. In the first simulation, we obtain the energy
results for all instructions entering the processor pipeline. In the second set of simulations,
we only account for the energy of those instructions which are committed. The effect of
the misspeculation is much more significant in the integer benchmarks because of the in-
creased number of difficult to predict branches. For our benchmarks, there are on average
3.3 times as many mispredicted branches in the integer benchmarks as in the floating point
benchmarks.

In this work, we have not studied the energy effects of other forms of speculative exe-
cution (e.g. load speculation [39] or value speculation [40]) which do not commonly exist
in real processors. We focus on control speculation as it will be an increasingly significant
portion of total energy waste as processor pipelines increase in length.

Although speculative execution results in the execution of uncommitted instructions,
speculation is necessary to obtain high performance. Eliminating speculation is not prac-
tical, but controlling the level of speculation provides the potential for efficient processor
design [4, 19].

6. Architectural Waste

In this section, we study how the architectural design of a processor can contribute to the
energy wasted during program execution. We define architectural waste to occur when the
size of a processor structure is not optimal for the current state of the particular application

11



Seng & Tullsen

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

art equake galgel gap mesa mgrid average

pe
rc

en
ta

ge
 o

f c
ac

he
 e

ne
rg

y 
w

as
te

d

dcache

icache

Figure 6: Potential cache energy savings with optimal cache sizing for the floating point
benchmarks.

currently executing. Suboptimal structure sizing occurs when a resource on the processor
is larger (or in some cases smaller) than it needs to be for a particular program.

The sizes of structures on a processor architecture are determined based upon overall
performance requirements along with technological limitations. In this section, we study
how much energy is wasted because of suboptimal sizing for particular applications. This
knowledge is important in gauging the energy potential of architectures which propose
adaptive reconfiguration in order to reduce power consumption.

The structures we look at are the instruction and data caches, and the instruction
issue queues. These represent a subset of all processor structures that could be adaptively
sized, but do represent key structures which consume a significant amount of power and are
typically sized as large as possible for peak performance. Other memory-based structures
that could be studied in a similar manner include the register file, TLBs, reorder buffer, and
the branch predictor. A study of optimal structure sizing provides insight into the potential
energy savings to be gained given oracle knowledge of program behavior.

6.1 Cache Resizing

Because different programs have different memory behavior and access patterns, a cache
of fixed size and configuration is not optimal for all programs, nor in many cases for all
phases of a single program. In cases where the processor is executing a tight loop, a large
instruction cache is not necessary. This is also true for the data cache if the memory
footprint of the application is very small. In these instances smaller caches would provide
the same performance, but with lower energy requirements.

12



Architecture-Level Power Optimization – What are the Limits?

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 10 20 30 40 50 60
cycles between reconfiguration

no
rm

al
iz

ed
 c

ac
he

 e
ne

rg
y

int
fp

Figure 7: Effect on instruction cache energy when reconfiguring at different intervals.

In order to quantify the amount of energy wasted due to suboptimal cache sizes, we need
to model a cache that is of the perfect size for the application currently being executed. To
simulate the optimally sized cache, we simulate a continuum of cache sizes and configurations
(24 different instruction and 24 different data caches). The cache sizes range from 2KB to
64KB with associativities ranging from 1 way to 8 way. During each cycle, we select the
smallest (lowest power) cache from among those (typically several) that hit on the most
accesses. To compute the energy savings, we compare the optimal results against our
baseline, a 64 KB 2-way cache.

In Figure 5, we show the results of this experiment for the integer benchmarks. The
results for the floating point benchmarks are shown in Figure 6. The data represents the
fraction of cache energy that is wasted due to a cache that is not of optimal size at the time
of access. The energy modeled represents the energy consumed due to cache accesses and
no other effects such as leakage.

The results show potential energy reductions for the integer applications of 54.1% of
the total instruction cache power and 37.2% for the data cache. For the floating point
applications, the potential reduction is 55.7% for the instruction cache and 36.8% for the
data cache.

In addition, Figures 7 and 8 show results where the granularity of reconfiguration
is varied from every cycle to once every 50 cycles. When the granularity is larger than
one cycle, we select for that entire interval the largest cache that was selected over the
range. This could be pessimistic, as in some cases the best power might be achieved with
a smaller cache and a few more accesses allowed to proceed to the second level cache, but
it is a definition of optimal that is straightforward to compute. There is a slight dip in
the floating point results due to a particular interval value that resonates strongly with the
timing of one particular benchmark (art).

13



Seng & Tullsen

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60
cycles between reconfiguration

no
rm

al
iz

ed
 c

ac
he

 e
ne

rg
y

int
fp

Figure 8: Effect on data cache energy when reconfiguring at different intervals.

Both the data and instruction cache have the potential for large savings via optimization
and adaptability. Most of the benchmarks put considerably less pressure on the instruction
cache, and the results indicate large caches are less necessary for instructions.

These results indicate that reconfiguration must occur very often to get most of the
available benefit. However, that need not discourage work in this area. Other paradigms
besides whole cache-level reconfiguration fit into this category. For example, techniques that
adapt individual cache lines (e.g., powering down lines unlikely to be accessed again [41])
potentially do reconfigure the cache on a cycle-by-cycle basis.

6.2 Issue Queue Resizing

In an out-of-order processor, the size of the issue window greatly affects performance. A
larger window size allows a processor to extract more parallelism from the code sequence
it is currently executing. More instructions can issue because of the increased number of
potentially available instructions. Although a large window is helpful, there are instances
where the instruction stream contains much less parallelism than the maximum processor
issue width. When this occurs, the larger issue queue cannot be fully utilized. Additionally,
the issueable instructions are frequently located in a small portion of the issue queue [7].
In this case, the wakeup logic and selection logic are much larger than necessary. It is these
instances for which we consider an instruction queue design to be wasteful. This section
quantifies that waste.

In order to measure the waste due to oversized issue queues, we compare the energy
used by a fixed size issue queue versus one that can be dynamically resized. We assume
that the dynamically resized queue is optimally resized every cycle. An optimally sized
queue is one where the queue contains the fewest number of entries required to maintain
the same performance (that is, issue the same number of instructions over that interval) as

14



Architecture-Level Power Optimization – What are the Limits?

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

cra
fty


eo

n
gc

c
gz

ip

pa
rse

r

pe
rlb

mk
tw

olf


vo
rte

x
vp

r ar
t

eq
ua

ke


ga
lge

l
ga

p

mes
a

mgr
id

in
t. a

vg
.

fp
 av

g.

pe
rc

en
ta

ge
 o

f i
q 

en
er

gy
 w

as
te

d

Figure 9: Potential for energy savings available for optimally sized instruction queues.

a large fixed size queue. In these experiments, the fixed size instruction queue contains 64
entries. The energy shown for the integer benchmarks is for only the integer queue because
of the small number of floating point instructions in these benchmarks. The data shown for
the floating point benchmarks is for the sum total energy of the integer and floating point
queues.

Figure 9 shows the amount of instruction queue energy waste compared to an optimally
sized queue. The fraction of instruction queue energy wasted for the integer benchmarks is
34.8% on the average. For the floating point benchmarks, the waste is 43.0%.

The fraction of energy wasted by the instruction queue is significant and indicative
of the limited parallelism available. In another experiment, we found that the difference
between reconfiguring the queue size every cycle versus every 50 cycles makes only a 15%
difference in the amount of waste. This indicates the waste is more related to longer term
effects such as program phases [30] rather than factors like memory latency, and coarse-grain
reconfigurability is still useful.

7. Removing Program, Speculation, Architectural Waste

We now show the results of removing all three sources of waste: program waste, specula-
tion waste, and architectural waste. In these results, we run the simulations removing all
energy costs associated with all the instruction types that are considered to be unnecessary
computation. In addition, all energy due to speculation and suboptimal structure sizing
are removed as well. The predictable redundancy from Section 4, however, is not included
in these results.

Figure 10 shows the results for the integer and floating point benchmarks, respectively.
For the integer benchmarks, the overall energy waste ranges from 48.4% to 62.4%, with an

15



Seng & Tullsen

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

cra
fty


eon

gcc


gzip


parse
r

perlb
mk

tw
olf



vo
rte

x
vp

r art

equake


galgel
gap

mesa


mgr
id

int. a
vg

.

fp av
g.

pe
rc

en
ta

ge
 o

f t
ot

al
 e

ne
rg

y 
w

as
te

d

Figure 10: Percentage of total energy that is wasted due to all three sources: program
waste, speculation waste, and architectural waste.

average of 55.2%. For the floating point benchmarks, the overall energy savings ranges from
33.7% to 83.3%, with an average of 52.2%.

These results indicate that there are certainly significant gains to be had for architecture-
level power optimizations. However, it also shows that for a very wide class of these opti-
mizations, the total savings available are not huge. Order of magnitude decreases in energy
are not going to come from exploiting wasted execution bandwidth and dynamic reconfigu-
ration of conventional processors. They will need to come from more profound changes to
the way we architect processors. Note that our analysis of dynamic resizing is not complete,
as we ignore some structures that can be made adaptable. However, the effect of the other
structures is not going to dramatically change the conclusion.

Interestingly, the total energy wasted for the integer and floating point benchmarks is
similar, but comes from different sources. For the integer benchmarks, speculation is much
more of a factor than for the floating point benchmarks. In both type of benchmarks,
the biggest contributor was due to program waste. Regardless of how much speculation is
removed from a processor or the sizing of processor structures, the energy cost of executing
sequences of unnecessary instructions is large.

The results reported here focus on whole-processor energy. The optimally sized struc-
tures, in particular, are limited to a small effect because they only target one piece of the
architecture. For environments where power density is the largest power/energy concern,
these techniques can have a bigger impact if they specifically target the right component.
If these opportunities are exploited in ways that maintain performance, power clearly is
reduced as well.

16



Architecture-Level Power Optimization – What are the Limits?

8. Conclusion

In this research, we examine the limits of architecture-level power reduction on a modern
CPU architecture. We assume that there are three opportunities to save energy – avoid
unnecessary computation (unnecessary speculation or dead computation), avoid redundant
computation, and do not power architectural structures that are not needed (eliminate
architectural waste via optimal sizing of structures).

This paper quantifies the energy lost to three sources of waste: program waste, specu-
lation waste, and architectural waste. We identify many types of unnecessary instructions
and account for the energy cost of those instructions, as well as other instructions that only
produce values for unnecessary instructions. In the benchmarks we studied, we demonstrate
that 37.7% of the energy used in executing the integer benchmarks is due to program waste.
For the floating point benchmarks, 47.0% of the energy is because of program waste. It also
shows that to take full advantage of program waste requires eliminating both the redundant
instructions and their producers.

Speculation waste averages over 15% for the integer benchmarks, but is much lower for
the floating point.

Architectural waste occurs when processor structures are larger than required and can-
not be dynamically sized. An optimal instruction cache can consume 55% less energy than
a 64KB instruction cache. Similarly, an optimal data cache can use 37% less than the
baseline 64KB data cache.

When all of these sources of waste are eliminated, the total energy of the processor has
the potential to be reduced by just over a factor of two for both the integer and floating point
benchmarks. While this represents a significant opportunity, it also indicates that radical
advances in power and energy efficiency require more significant architectural change than
the adaptive techniques characterized by this limit study.

9. Acknowledgments

The authors would like to thank the anonymous reviewers for many helpful suggestions.
This research was supported by SRC contract 2001-HJ-897, NSF grant CCR-0105743, and
grants from Intel Corporation.

References

[1] J. Yang and R. Gupta, “Energy-efficient load and store reuse,” in International Symposium on
Low Power Electronic Design, Aug. 2001.

[2] A. Yoaz, R. Ronen, R. S. Chappell, and Y. Almog, “Silence is golden?,” in Proceedings of the
Seventh International Symposium on High-Performance Computer Architecture, Jan. 2001.

[3] A. Butts and G. Sohi, “Dynamic dead-instruction detection and elimination,” in Tenth Interna-
tional Conference on Architectural Support for Programming Languages and Operating Systems,
October 2002.

[4] S. Manne, A. Klauser, and D. Grunwald, “Pipeline gating: Speculation control for energy
reduction,” in 25th Annual International Symposium on Computer Architecture, June 1998.

17



Seng & Tullsen

[5] A. Seznec, S. Felix, V. Krishnan, and Y. Sazeides, “Design tradeoffs for the alpha ev8 conditional
branch predictor,” in 29th Annual International Symposium on Computer Architecture, May
2002.

[6] D. Albonesi, “Selective cache ways: on-demand cache resource allocation,” in 32nd International
Symposium on Microarchitecture, Dec. 1999.

[7] D. Folegnani and A. Gonzalez, “Reducing power consumption of the issue logic,” in Workshop
on Complexity-Effective Design, May 2000.

[8] M. Martin, A. Roth, and C. Fischer, “Exploiting dead value information,” in 30th International
Symposium on Microarchitecture, Dec. 1997.

[9] K. M. Lepak and M. H. Lipasti, “On the value locality of store instructions,” in 27th Annual
International Symposium on Computer Architecture, June 2000.

[10] M. Lipasti, C. Wilkerson, and J. Shen, “Value locality and load value prediction,” in Seventh
International Conference on Architectural Support for Programming Languages and Operating
Systems, Oct. 1996.

[11] S. Onder and R. Gupta, “Load and store reuse using register file contents,” in 15th International
Conference on Supercomputing, June 2001.

[12] M. Franklin and G. S. Sohi, “Register traffic analysis for streamlining inter-operation communi-
cation in fine-grain parallel processors,” in 25th International Symposium on Microarchitecture,
Dec. 1992.

[13] D. Tullsen and J. Seng, “Storageless value prediction using prior register values,” in 26th Annual
International Symposium on Computer Architecture, pp. 270–279, May 1999.

[14] M. Burtsher and B. Zorn, “Exploring last n value prediction,” in International Conference on
Parallel Architectures and Compilation Techniques, Oct. 1999.

[15] A. Sodani and G. Sohi, “Dynamic instruction reuse,” in 24th Annual International Symposium
on Computer Architecture, June 1997.

[16] E. Rotenberg, “Exploiting large ineffectual instruction sequences,” tech. rep., North Carolina
State University, 1999.

[17] A. Sodani and G. S. Sohi, “An empirical analysis of instruction repetition,” in Eighth Interna-
tional Conference on Architectural Support for Programming Languages and Operating Systems,
Oct. 1998.

[18] R. I. Bahar, G. Albera, and S. Manne, “Using confidence to reduce energy consumption in
high-performance microprocessors,” in International Symposium on Low Power Electronics and
Design 1998, Aug. 1998.

[19] J. Seng, D. Tullsen, and G. Cai, “Power-sensitive multithreaded architecture,” in International
Conference on Computer Design 2000, Sept. 2000.

[20] D. Tullsen, S. Eggers, and H. Levy, “Simultaneous multithreading: Maximizing on-chip paralle
lism,” in 22nd Annual International Symposium on Computer Architecture, pp. 392–403, June
1995.

[21] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, and S. Dwarkadas, “Memory hierarchy
reconfiguration for energy and performance in general-purpose processor architectures,” in 33rd
International Symposium on Microarchitecture, Dec. 2000.

[22] H. Kim, A. K. Somani, and A. Tyagi, “A reconfigurable multi-function computing cache archi-
tecture,” in IEEE Transactions on Very Large Scale Integration Systems, Aug. 2001.

18



Architecture-Level Power Optimization – What are the Limits?

[23] P. Ranganathan, S. Adve, and N. Jouppi, “Reconfigurable caches and their application to media
processing,” in 27th Annual International Symposium on Computer Architecture, June 2000.

[24] S.-H. Yang, M. D. Powell, B. Falsafi, K. Roy, and T. N. Vijaykumar, “An integrated cir-
cuit/architecture approach to reducing leakage in deep-submicron high-performance i-caches,”
in Seventh International Symposium on High Performance Computer Architecture, Jan. 2001.

[25] S.-H. Yang, M. D. Powell, B. Falsafi, and T. N. Vijaykumar, “Exploiting choice in resizable cache
design to optimize deep-submicron processor energy-delay,” in Eighth International Symposium
on High Performance Computer Architecture, Feb. 2002.

[26] M. Powell, A. Agarwal, T. Vijaykumar, B. Falsafi, and K. Roy, “Reducing set-associative cache
energy via way-prediction and selective direct-mapping,” in 34th International Symposium on
Microarchitecture, Dec. 2001.

[27] A. Buyuktosunoglu, D. Albonesi, P. Bose, P. Cook, and S. Schuster, “Tradeoffs in power-efficient
issue queue design,” in International Symposium on Low Power Electronics and Design, Aug.
2002.

[28] A. Buyuktosunoglu, S. Schuster, D. Brooks, P. Bose, P. Cook, and D. Albonesi, “An adaptive
issue queue for reduced power at high performance,” in Workshop on Power-Aware Computer
Systems, Nov. 2000.

[29] D. Folegnani and A. Gonzalez, “Energy-effective issue logic,” in 28th Annual International
Symposium on Computer Architecture, June 2001.

[30] R. I. Bahar and S. Manne, “Power and energy reduction via pipeline balancing,” in 28th Annual
International Symposium on Computer Architecture, May 2001.

[31] S. Ghiasi, J. Casmira, and D. Grunwald, “Using ipc variation in workloads with externally
specified rates to reduce power consumption,” in Workshop on Complexity-Effective Design,
June 2000.

[32] R. I. Bahar, G. Albera, and S. Manne, “Power and performance tradeoffs using various caching
strategies,” in Proceedings of the International Symposium on Low Power Electronics and De-
sign (ISLPED-98), (New York), pp. 64–69, ACM Press, Aug. 10–12 1998.

[33] S. Raasch, N. Binkert, and S. Reinhardt, “A scalable instruction queue design using dependence
chains,” in 29th Annual International Symposium on Computer Architecture, May 2002.

[34] H. Parikh, K. Skadron, Y. Zhang, M. Barcella, and M. R. Stan, “Power issues related to
branch prediction,” in Proceedings of the Eighth International Symposium on High-Performance
Computer Architecture, Feb. 2002.

[35] D. Brooks and M. Martonosi, “Dynamically exploiting narrow width operands to improve
processor power and performance,” in HPCA1999, Jan. 1999.

[36] R. Balasubramonian, S. Dwarkadas, and D. Albonesi, “Reducing the complexity of the register
file in dynamic superscalar processors,” in 34th International Symposium on Microarchitecture,
Dec. 2001.

[37] D. Tullsen, “Simulation and modeling of a simultaneous multithreading processor,” in 22nd
Annual Computer Measurement Group Conference, Dec. 1996.

[38] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework for architectural-level power
analysis and optimizations,” in 27th Annual International Symposium on Computer Architec-
ture, June 2000.

[39] B. Calder and G. Reinman, “A comparative study of load speculation architectures,” Journal
of Instruction Level Parallelism, vol. May, 2000.

19



Seng & Tullsen

[40] M. Lipasti, C. Wilkerson, and J. Shen, “Value locality and load value prediction,” in Seventh
International Conference on Architectural Support for Programming Languages and Operating
Systems, Oct. 1996.

[41] S. Kaxiras, Z. Hu, and M. Martonosi, “Cache decay: Exploiting generational behavior to reduce
cache leakage power,” in 28th Annual International Symposium on Computer Architecture, June
2001.

20


