
Perceptrons for Dummies

Daniel A. Jiménez

Department of Computer Science
Rutgers University

2

Conditional Branch Prediction is a
Machine Learning Problem

� The machine learns to predict conditional branches

� So why not apply a machine learning algorithm?

� Artificial neural networks

� Simple model of neural networks in brain cells

� Learn to recognize and classify patterns

� We used fast and accurate perceptrons [Rosenblatt `62, Block `62]

for dynamic branch prediction [Jiménez & Lin, HPCA 2001]

3

Input and Output of the Perceptron

� The inputs to the perceptron are branch outcome histories
� Just like in 2-level adaptive branch prediction

� Can be global or local (per-branch) or both (alloyed)

� Conceptually, branch outcomes are represented as

� +1, for taken

� -1, for not taken

� The output of the perceptron is
� Non-negative, if the branch is predicted taken

� Negative, if the branch is predicted not taken

� Ideally, each static branch is allocated its own perceptron

4

Branch-Predicting Perceptron

� Inputs (x’s) are from branch history and are -1 or +1
� n + 1 small integer weights (w’s) learned by on-line training
� Output (y) is dot product of x’s and w’s; predict taken if y � 0
� Training finds correlations between history and outcome

5

Training Algorithm

6

What Do The Weights Mean?

� The bias weight, w0:
� Proportional to the probability that the branch is taken
� Doesn’t take into account other branches; just like a Smith predictor

� The correlating weights, w1 through wn:
� wi is proportional to the probability that the predicted branch agrees

with the ith branch in the history

� The dot product of the w’s and x’s
� wi × xi is proportional to the probability that the predicted branch is

taken based on the correlation between this branch and the ith branch
� Sum takes into account all estimated probabilities

� What’s �?
� Keeps from overtraining; adapt quickly to changing behavior

7

Organization of the Perceptron Predictor

� Keeps a table of m perceptron weights vectors
� Table is indexed by branch address modulo m

[Jiménez & Lin, HPCA 2001]

8

Mathematical Intuition

A perceptron defines a hyperplane in n+1-dimensional space:

For instance, in 2D space we have:

This is the equation of a line, the same as

9

Mathematical Intuition continued

In 3D space, we have

Or you can think of it as

i.e. the equation of a plane in 3D space

This hyperplane forms a decision surface separating predicted
taken from predicted not taken histories. This surface intersects the
feature space. Is it a linear surface, e.g. a line in 2D, a plane in 3D,
a cube in 4D, etc.

10

Example: AND

� Here is a representation of the AND function
� White means false, black means true for the output
� -1 means false, +1 means true for the input

-1 AND -1 = false

-1 AND +1 = false

+1 AND -1 = false

+1 AND +1 = true

11

Example: AND continued

� A linear decision surface (i.e. a plane in 3D space) intersecting
the feature space (i.e. the 2D plane where z=0) separates false
from true instances

12

Example: AND continued

� Watch a perceptron learn the AND function:

13

Example: XOR

� Here’s the XOR function:

-1 XOR -1 = false

-1 XOR +1 = true

+1 XOR -1 = true

+1 XOR +1 = false

Perceptrons cannot learn such linearly inseparable functions

14

Example: XOR continued

� Watch a perceptron try to learn XOR

15

Concluding Remarks

� Perceptron is an alternative to traditional branch predictors

� The literature speaks for itself in terms of better accuracy

� Perceptrons were nice but they had some problems:

� Latency

� Linear inseparability

16

The End

Idealized Piecewise Linear
Branch Prediction

Daniel A. Jiménez

Department of Computer Science
Rutgers University

18

Previous Neural Predictors

� The perceptron predictor uses only pattern history information
� The same weights vector is used for every prediction of a static branch

� The ith history bit could come from any number of static branches

� So the ith correlating weight is aliased among many branches

� The newer path-based neural predictor uses path information
� The ith correlating weight is selected using the ith branch address

� This allows the predictor to be pipelined, mitigating latency

� This strategy improves accuracy because of path information

� But there is now even more aliasing since the ith weight could be used
to predict many different branches

19

Piecewise Linear Branch Prediction

� Generalization of perceptron and path-based neural predictors

� Ideally, there is a weight giving the correlation between each

� Static branch b, and

� Each pair of branch and history position (i.e. i) in b’s history

� b might have 1000s of correlating weights or just a few

� Depends on the number of static branches in b’s history

� First, I’ll show a “practical version”

20

The Algorithm: Parameters and Variables

� GHL – the global history length

� GHR – a global history shift register

� GA – a global array of previous branch addresses

� W – an n × m × (GHL + 1) array of small integers

21

The Algorithm: Making a Prediction

Weights are selected based on the current branch and the ith most recent branch

22

The Algorithm: Training

23

Why It’s Better

� Forms a piecewise linear decision surface
� Each piece determined by the path to the predicted branch

� Can solve more problems than perceptron

Perceptron decision surface for XOR

doesn’t classify all inputs correctly

Piecewise linear decision surface for XOR

classifies all inputs correctly

24

Learning XOR

� From a program that computes XOR using if statements

perceptron prediction piecewise linear prediction

25

A Generalization of Neural Predictors

� When m = 1, the algorithm is exactly the perceptron predictor

� W[n,1,h+1] holds n weights vectors

� When n = 1, the algorithm is path-based neural predictor

� W[1,m,h+1] holds m weights vectors

� Can be pipelined to reduce latency

� The design space in between contains more accurate predictors

� If n is small, predictor can still be pipelined to reduce latency

26

Generalization Continued

Perceptron and path-
based are the least
accurate extremes of
piecewise linear branch
prediction!

27

Idealized Piecewise Linear
Branch Prediction

� Get rid of n and m

� Allow 1st and 2nd dimensions of W to be unlimited

� Now branches cannot alias one another; accuracy much better

� One small problem: unlimited amount of storage required

� How to squeeze this into 65,792 bits for the contest?

28

Hashing

� 3 indices of W : i, j, & k, index arbitrary numbers of weights
� Hash them into 0..N-1 weights in an array of size N
� Collisions will cause aliasing, but more uniformly distributed
� Hash function uses three primes H1 H2 and H3:

29

More Tricks

� Weights are 7 bits, elements of GA are 8 bits
� Separate arrays for bias weights and correlating weights
� Using global and per-branch history

� An array of per-branch histories is kept, alloyed with global history

� Slightly bias the predictor toward not taken
� Dynamically adjust history length

� Based on an estimate of the number of static branches

� Extra weights
� Extra bias weights for each branch
� Extra correlating weights for more recent history bits

� Inverted bias weights that track the opposite of the branch bias

30

Parameters to the Algorithm

#define NUM_WEIGHTS 8590
#define NUM_BIASES 599
#define INIT_GLOBAL_HISTORY_LENGTH 30
#define HIGH_GLOBAL_HISTORY_LENGTH 48
#define LOW_GLOBAL_HISTORY_LENGTH 18
#define INIT_LOCAL_HISTORY_LENGTH 4
#define HIGH_LOCAL_HISTORY_LENGTH 16
#define LOW_LOCAL_HISTORY_LENGTH 1
#define EXTRA_BIAS_LENGTH 6
#define HIGH_EXTRA_BIAS_LENGTH 2
#define LOW_EXTRA_BIAS_LENGTH 7
#define EXTRA_HISTORY_LENGTH 5
#define HIGH_EXTRA_HISTORY_LENGTH 7
#define LOW_EXTRA_HISTORY_LENGTH 4
#define INVERTED_BIAS_LENGTH 8
#define HIGH_INVERTED_BIAS_LENGTH 4
#define LOW_INVERTED_BIAS_LENGTH 9

#define NUM_HISTORIES 55
#define WEIGHT_WIDTH 7
#define MAX_WEIGHT 63
#define MIN_WEIGHT -64
#define INIT_THETA_UPPER 70
#define INIT_THETA_LOWER -70
#define HIGH_THETA_UPPER 139
#define HIGH_THETA_LOWER -136
#define LOW_THETA_UPPER 50
#define LOW_THETA_LOWER -46
#define HASH_PRIME_1 511387U
#define HASH_PRIME_2 660509U
#define HASH_PRIME_3 1289381U
#define TAKEN_THRESHOLD 3

All determined empirically with an ad hoc approach

31

References

� Me and Lin, HPCA 2001 (perceptron predictor)

� Me and Lin, TOCS 2002 (global/local perceptron)

� Me, MICRO 2003 (path-based neural predictor)

� Juan, Sanjeevan, Navarro, SIGARCH Comp. News, 1998

(dynamic history length fitting)

� Skadron, Martonosi, Clark, PACT 2000 (alloyed history)

32

The End

33

Program to Compute XOR

int f () {
int a, b, x, i, s = 0;

for (i=0; i<100; i++) {
a = rand () % 2;
b = rand () % 2;
if (a) {

if (b)
x = 0;

else
x = 1;

} else {
if (b)

x = 1;
else

x = 0;
}
if (x) s++; /* this is the branch */

}
return s;

}

