
Multiperspective Perceptron Predictor

Daniel A. Jiménez

Department of Computer Science and Engineering

Texas A&M University

Abstract

I present a branch predictor based on the idea of viewing

branch history from multiple perspectives. The predictor is a

hashed perceptron predictor using previous outcomes and ad-

dresses of branches organized in ways beyond the traditional

global and local history. This multiperspective perceptron pre-

dictor achieves a mean mispredictions per 1000 instruction

(MPKI) rate of 5.335 given an 8.25KB hardware budget, 4.147

for a 64.25KB hardware budget, and 3.238 for an unlimited

hardware budget.

1 Introduction

Branch predictors typically use global and/or local (i.e. per-

branch) history to match or find correlations between previous

branch outcomes and the current branch. However, there are

many other ways to organize history beyond global and lo-

cal. For example, inspired by the work of Albericio et al. [1],

Seznec et al. propose using the inner-most loop iteration

counter (IMLI) [10] as a feature in a hashed perceptron pre-

dictor together with local and global history as an additional

component of a TAGE-SC-L predictor.

This paper describes a hashed perceptron predictor [12] that

incorporates many kinds of branch history to make a predic-

tion.

2 Background

2.1 Hashed Perceptron Predictor

The hashed perceptron predictor is similar to an idea of

Loh and Jiménez called modulo path-history [6], while O-

GEHL [7] is a very specific instance of the general technique.

The idea is to have several tables, each indexed by a different

hash of branch history. The tables have somewhat wide satu-

rating confidence weights. The selected weights are summed

and the prediction is taken if the sum is at least zero, not-taken

otherwise. On a mispredict or low-confidence correct predic-

tion, the corresponding weights are incremented if the branch

is taken, decremented otherwise. The hashed perceptron pre-

dictor, like modulo path-history and O-GEHL, improves over

the original perceptron predictor [5] by breaking the one-to-

one correspondence between weights and history bits, allow-

ing a more efficient representation. Perceptron-based predic-

tors are currently in use in products made by AMD and Oracle.

3 Multiperspective Perceptron Predic-

tor

The multiperspective perceptron predictor is a hashed percep-

tron predictor that uses not only hashed global path and pat-

tern histories, but a variety of other kinds of features based on

various organizations of branch histories. To index the pre-

diction tables, the hash value of a feature is computed using

recent history information, hashed together with the address

of the branch to be predicted, then taken modulo the size of

the prediction table. The weight corresponding to that index

in the table is read, then all such weights for all features are

summed and thresholded to make a prediction of taken or not

taken. After exploring many organizations, I found the follow-

ing features useful for branch prediction:

3.1 Traditional Features

The following features from traditional branch predictors are

used:

GHIST Global history is the outcome of a branch shifted

into a large register, with 0 meaning not taken and 1 mean-

ing taken. It is hashed by bitwise exclusive-ORing multi-bit

blocks of histories. Parameters to this feature give the starting

and ending indices of the history register to hash.

PATH Path history is the sequence recent branch addresses.

Addresses truncated to 16 bits are shifted into an array. Pa-

rameters include a depth, a shift, and a mixing style. The array

is hashed by accumulating a hash value up to the given depth

and doing, depending on the mixing style, either shifting the

accumulator and adding the next address, or exclusive-ORing

a bit of the accumulator with a given bit of the next address.

LOCAL Local history is a first-level table of per-branch

shift registers selected by a hash of the branch address, then

hashed as an index into a second level table of perceptron

weights.

1



GHISTPATH This is a combination of GHIST and PATH.

The GHIST and PATH features are exclusive-ORed together

as they are computed.

SGHISTPATH This is an alternate formulation of GHIST-

PATH where a range of histories can be specified. It is inspired

by the strided sampling hashed perceptron predictor [4] from

the last competition.

BIAS The value of this feature is 0. It will be exclusive-

ORed with the branch address to form an index into the table.

This feature tracks the tendency of a branch to be taken or not,

regardless of other branch history.

3.2 Novel Features

The following novel features are used:

IMLI The inner-most loop iteration counter [10] is used as

a feature, but with an additional twist. In the original formula-

tion, when a backward branch is encountered, the IMLI count

is incremented if the branch is taken, otherwise it is reset. This

captures the behavior of loops with back-edges at the bottom,

which smart compilers endeavor to produce when optimizing

for performance. Some compilers are not smart or optimize for

size, so I explore an alternate IMLI: when a forward branch is

encountered, the IMLI count is incremented when the branch

is not taken, and reset when it is taken, representing a loop exit.

This represents the case where the loop exit is at the top of the

loop body, followed by an unconditional jump at the bottom.

Both the backward and forward formulations of IMLI turn out

to be useful for the CBP2016 traces. For the 8.25KB hard-

ware budget, only the forward version of IMLI is used since

the backward (original) version does not seem to help.

MODHIST Some (most) branches in the global history are

not correlated to branch outcome, but a single bit different in

two histories can lead to two different hash values, causing

longer training times and increased aliasing pressure. Tradi-

tional (one-to-one) perceptron predictors can overcome this

problem since they find correlations between individual branch

outcomes and not hashed histories, they are still susceptible to

what I call branch misalignment. Suppose a branch branches

over another branch. The second branch sometimes appears in

the branch history and sometimes does not appear, leading to

the same branch outcomes appearing in different locations in

the global history. Neither traditional nor hashed perceptrons,

nor other hashed-based predictors such as TAGE, can handle

this problem without expending additional table entries and in-

creasing training time. I propose “modulo history” where only

branches with addresses congruent to 0 modulo some modu-

lus are recorded. Incongruent branches causing misalignment

are filtered out of the history and ignored. The problem is that

those filtered branches may indeed have some correlation; that

correlation is hopefully captured by the other features. Mod-

ulo history has two parameters: the modulus (a small integer),

and the history length.

MODPATH Modulo path history is the same as modulo his-

tory, but uses branch addresses instead of outcomes. The pa-

rameters are the same and the hash is computed similarly to

the PATH feature.

GHISTMODPATH This feature combines modulo history

with modulo path history in a way analogous to GHISTPATH

above.

RECENCY The predictor keeps a fixed-depth recency stack

of recently encountered branches managed with least-recently-

used replacement. The feature hashes the addresses in the

stack. The parameters are the depth into the stack to hash,

a shift by which to shift the accumulator after hashing, and a

mixing style parameter similar to the PATH feature.

RECENCYPOS The depth in the recency stack where a

branch address is encountered, or the fact that the branch is not

present in the stack, have a surprising correlation with branch

outcome. This feature has a single parameter: the depth into

the stack to search. The hash value is the position where the

address was found, or the maximum table index if the address

was not found.

BLURRYPATH Traditional branch path history is a precise

record of the sequence of recent branches. “Blurry” path his-

tory records larger-granularity regions where branches have

been encountered, and only shifts a region into the history

when a new region is entered. Regions are computed as branch

addresses right shifted by a certain amount given as a param-

eter. When a branch from a new region is encountered, the

previous region is shifted into the history. The feature’s pa-

rameters are the amount to shift, the depth within the history

to hash, and a parameter that controls how much to shift each

region number while generating the hash.

ACYCLIC This feature keeps a history register H of length

n and records the outcome of a branch with address PC in

H[PC(modn)]. The intuition is that we would like to remove

the effect of loops (i.e. cycles) in the history and just keep

the most recent outcome of any branch. Two kinds of acyclic

history are used: one where H is an array of branch outcomes,

and another where it is an array of hashed addresses of the

corresponding branches. The parameters to the feature are the

size of H , the amount by which to shift hashed elements of H ,

and a mixing style as in PATH.

2



3.3 Discussion of Features

None of the novel features are particularly good predictors

by themselves. However, together with each other and with

the traditional features, they provide alternate perspectives on

branch history and allow finding new correlations. The fea-

tures mentioned above are the ones that helped improve accu-

racy on the CBP2016 traces.

4 Optimizations

This section describes how I optimized my predictors.

Feature Selection Feature selection was done using a ge-

netic algorithm followed by a hill-climbing phase where hun-

dreds of thousands of combinations of features were eval-

uated on a subset of the CBP2016 traces. The best fea-

tures I could find are given in the source code as an array of

history spec structs.

Coefficients As in previous work [2, 3], I found that multi-

plying each weight read from each table by a coefficient im-

proved prediction accuracy by allowing tables with more accu-

racy to have a more important role in the prediction. Once the

baseline features were chose, I used a genetic algorithm fol-

lowed by hill climbing to select coefficients for each feature.

Bit Width Optimization and Table Size My framework al-

lows for optimizing the bit width for the weights in each fea-

ture, but I did not find much improvement this way. One of the

tables for the small predictor is 5 bits wide; the rest are 6 bits.

Similarly, I tune table sizes for some of the features, allowing

the rest of the features to split equally the remaining hardware

budget for weights.

Shared Magnitudes Previous predictors have weights that

share lower-order bits [9, 8]. In my predictor, weights are rep-

resented in sign/magnitude format with two signs sharing a

single magnitude. The sign bit is the most important bit in the

prediction, so it makes sense that there should be more signs

than magnitudes.

Branch Filter Filtering branches that have either never or al-

ways been taken helps control aliasing in the predictor tables. I

implement two Bloom filters that remember whether a branch

has ever been taken or ever not been taken. When a branch is

present in both filters, it is predicted by the perceptron predic-

tor; otherwise, it is predicted to behave as it always has before.

When a branch is first encountered, i.e. it is not in either filter,

it is predicted using a stack prediction of not taken. Bloom fil-

ters become full over time, so the predictor keeps track of the

occupancy of the filters and periodically decays random filter

entries to provide slightly improved filtering in the presence of

program phase behavior.

Transfer Function Multi-layer perceptrons use a non-linear

transfer function between layers. It makes sense to try apply-

ing a transfer function to the perceptron weights before they

are summed, since there may be a non-linear relationship be-

tween a weight value and the probability that a branch is taken.

After much experimentation, I found that a transfer function

of the form f(x) = (a + bx)/(1 + cx + dx2) gave a sig-

nificant improvement over the identity function. The function

is represented as a ROM table of values indexed by weight

magnitude. Figure 1 shows the transfer function used for 6-

bit weights (5-bit magnitudes) in the predictor. The function

has been tweaked slightly to improve accuracy; in particular,

as sign/magnitude representation allows for both positive and

negative zero, the function is different for the different repre-

sentations of zero.

Alternate Prediction on Low Confidence The magnitude

of the output of the perceptron gives a confidence in the pre-

diction. When it is very low, the prediction has a high chance

of being incorrect. In these cases, the predictor chooses a sub-

set of the features that have demonstrated good accuracy to

make an alternate prediction. The predictor keeps track of

the individual accuracy of each feature as though that feature

alone had made a prediction. Of the 37 features, the predictor

chooses the 20 with the fewest mispredictions to compute an

alternate sum yielding a prediction.

-20 0 20
x

-100

-50

0

50

100

f(
x)

Figure 1: Transfer Function

Adaptive threshold training. Seznec found that good accu-

racy is achieved when the number of updates to due mispredic-

tions is roughly the same as the number due to low-confidence

predictions [7]. He gives an algorithm to adapt the threshold

to maintain this property and I use that algorithm.

3



Hashing with IMLI and RECENCYPOS Some of the in-

dices into the tables are additionally hashed with one of the

IMLI counters or the recency position of the branch being pre-

dicted. This gives additional context to those indices resulting

in a slight improvement in accuracy.

Extra information. Bits from the addresses of other control-

flow instructions (e.g. unconditional branches, calls, and re-

turns) are also considered in the branch history.

4.1 Making a Prediction

To make a prediction, first we check the filter. If the branch

has only exhibited one behavior, we predict that it will con-

tinue to behave that way and prediction stops. Otherwise, we

compute the perceptron output. We go through all the tables of

weights in sequence. Each feature with its parameters are used

to hash the various histories together with the branch address

to yield an index into that feature’s table that selected a weight.

The transfer function is applied to the weight and the results

are summed. If the sum is below one, the branch is predicted

taken, otherwise it is predicted not taken.

4.2 Updating the Predictor

When the outcome of the branch is known, the algorithm de-

cides whether to update the predictor. It uses the perceptron

training rule to decide when to update. It must update the

predictor for an incorrect prediction. If the prediction is cor-

rect, the magnitude of the perceptron output is compared to

a threshold θ. If the magnitude is below θ then predictor is

updated. To update the predictor, each weight that was used

to make the prediction is incremented if the branch was taken

or decremented otherwise. The weights are incremented or

decremented with saturating arithmetic. A “fudge factor” is

applied to the perceptron output to bias the training algorithm

to balance the increased magnitude due to the transfer func-

tion.

5 Size of the Predictors

Table 1 shows the amount of state consumed by the 8.25KB

and 64.25KB predictors. The 64.25KB predictor uses 37 fea-

tures indexing 37 tables and the 8.25KB predictor used 16 fea-

tures for 16 tables. There are many run-time constants (e.g. the

sizes of structures etc.) that I do not count against the storage

budget since they are an immutable part of the the algorithm

just like the statements in the code. I also do not count stor-

age for short-term computations e.g. loop counters or other

temporary variables whose values do not persist from one pre-

diction to the next. The features and transfer functions can be

considered as large run-time constants.

6 Contribution of Features

Figure 2 shows the contribution of the 16 individual features of

the multiperspective perceptron predictor for an 8.25KB hard-

ware budget. Each bar represents the increase in MPKI when

the corresponding feature is replaced by a BIAS feature. That

is, each bar measures the accuracy lost when replacing the fea-

ture with the overall bias of the branch. (See the source code

for an in-depth explanation of the parameters.)

0.00

0.05

0.10

0.15

0.20

Contribution of Feature (MPKI)

F
ea

tu
re

GHIST 75, 150

GHISTPATH 31, 1

RECENCYPOS 31

IMLI forward

GHISTPATH 11, 2

GHISTMODPATH 0, 7

GHIST 21, 64

GHISTPATH 15, 4

RECENCY 14

LOCAL

GHIST 0, 19

GHIST 0, 65

SGHISTPATH 0, 4, 3

GHISTPATH 7, 1

BIAS

SGHISTPATH 1, 2, 5

Figure 2: Contribution of individual features to accuracy

The feature with the greatest contribution was GHIST hash-

ing the 75th through 150th most recent global history bits;

0.13 MPKI are lost when this feature is replaced by BIAS.

The next most valuable feature is GHISTPATH hashing the

31 most recent branch PCs and outcomes for a contribution of

0.11 MPKI. RECENCYPOS is the third most valuable feature,

contributing close to 0.1 MPKI.

This method of assigning value to features is not perfect;

the BIAS feature seems to contribute nothing because replac-

ing it with itself makes no difference. In designing the predic-

tor, I found that BIAS does contribute to reducing mispredic-

tions. Interestingly, one of the SGHISTPATH features seems

to contribute negative value; replacing it with BIAS actually

improves MPKI. That feature seemed to contribute value when

I was exploring the design space with the genetic algorithm

and hill-climbing, but because of time concerns I had to use

truncated traces (basically simpoints [11]). When run with the

full traces, it turns out that feature seems to hurt performance

slightly. Oops.

4



Structure # bits, 64.25KB predictor # bits, 8.25KB predictor

Global history 337 bits 151 bits
IMLI counters 2 counters × 32 bits = 64 32 bits
Global path 106 × 16 = 1696 32 × 16 = 512 bits
Misprediction monitoring bits 37 counters × 24 bits = 888 16 × 24 = 384 bits
Modulo history bits 31 bits 8 bits
Modulo path bits 27 entries × 16 bits = 432 8 × 16 = 128 bits
Local history bits 510 histories × 11 bits = 5610 48 × 11 = 528 bits
Recency stack bits 31 entries × 16 bits = 496 31 × 16 = 496 bits
Blurry path bits 154 0 bits
Acyclic history bits 12 0
Branch filter bits 2 × 18025 = 36050 0
Sized weight table bits 10704 total weights among 7 tables × (5+2) bits = 74928 10409 bits
Rest of table bits 1931 weights × 30 tables × (5+2) bits = 405510 54876 bits
Total Bits 526208 = 64.23KB 67524
Total Allowed Bits 526336 = 64.25KB 67584 = 8.25KB

Table 1: Sizes of Prediction Structures

7 Acknowledgment

This research is supported in part by NSF grants CCF-

1332598 and CCF-1162215. Special thanks to the organizers

of CBP2016. The infrastructure and workloads they have con-

tributed raise the bar for branch prediction research methodol-

ogy.

References

[1] Jorge Albericio, Joshua San Miguel, Natalie Enright Jerger, and Andreas

Moshovos. Wormhole: Wisely predicting multidimensional branches. In

Proceedings of the 47th Annual IEEE/ACM International Symposium on

Microarchitecture, MICRO-47, pages 509–520, Washington, DC, USA,

2014. IEEE Computer Society.

[2] Renée St. Amant, Daniel A. Jiménez, and Doug Burger. Low-power,

high-performance analog neural branch prediction. In Proceedings of the

41th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO-41). IEEE Computer Society, November 2008.

[3] Daniel A. Jiménez. An optimized scaled neural branch predictor. In

In Proceedings of the 29th IEEE International Conference on Computer

Design (ICCD-2011), October 2011.

[4] Daniel A. Jiménez. Strided sampling hashed perceptron predictor. In

Proceedings of JWAC-4: Championship Branch Prediction, June 2014.

[5] Daniel A. Jiménez and Calvin Lin. Dynamic branch prediction with

perceptrons. In Proceedings of the 7th International Symposium on

High Performance Computer Architecture (HPCA-7), pages 197–206,

January 2001.

[6] Gabriel H. Loh and Daniel A. Jiménez. Reducing the power and com-

plexity of path-based neural branch prediction. In Proceedings of the

2005 Workshop on Complexity-Effective Design (WCED’05), pages 28–

35, June 2005.

[7] André Seznec. Genesis of the o-gehl branch predictor. Journal of

Instruction-Level Parallelism (JILP), 7, April 2005.

[8] André Seznec. Tage-sc-l branch predictors. In Proceedings of JWAC-4:

Championship Branch Prediction, June 2014.

[9] André Seznec, Stephen Felix, Venkata Krishnan, and Yiannakakis Sazei-

des. Design tradeoffs for the Alpha EV8 conditional branch predictor.

In Proceedings of the 29th International Symposium on Computer Ar-

chitecture, May 2002.

[10] André Seznec, Joshua San Miguel, and Jorge Albericio. The inner

most loop iteration counter: A new dimension in branch history. In

Proceedings of the 48th International Symposium on Microarchitecture,

MICRO-48, pages 347–357, New York, NY, USA, 2015. ACM.

[11] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder.

Automatically characterizing large scale program behavior. In Proceed-

ings of the 10th International Conference on Architectural Support for

Programming Languages and Operating Systems, October 2002.

[12] David Tarjan and Kevin Skadron. Merging path and gshare index-

ing in perceptron branch prediction. ACM Trans. Archit. Code Optim.,

2(3):280–300, September 2005.

5


