

Enhancement for Accurate Stream Prefetching

Gang Liu1, Zhuo Huang1, Jih-Kwon Peir1, Xudong Shi2, Lu Peng3

 1Computer & Information 2Google Inc 3Electrical & Computer Engineering
 Science & Engineering
 University of Florida 1600 Amphitheater Pkwy Louisiana State University

Gainesville, FL 32611, USA Mountain View, CA 94043 Baton Rouge, LA 70803, USA
 {galiu,zhuang,peir}@cise.ufl.edu xdshi@google.com lpeng@lsu.edu

Abstract
One fundamental approach to improve memory

hierarchy performance is to prefetch the needed
instructions and data before their usage when cache
capacity is limited. A stream prefetcher captures a
sequence of nearby misses when their addresses follow
the same positive or negative direction in a small memory
region [17]. Once a stream of cache misses is identified,
the prefetcher prefetches consecutive blocks in the same
direction.

In this paper, we describe several enhancement
techniques to improve weakness of existing stream-based
prefetchers. First, the existing stream prefetcher does not
take streams with constant stride into consideration. For
long-stride accesses across more than one block,
prefetching consecutive blocks is wasteful and pollutes
the cache. Second, in accessing a data structure through
pointers such as trees and graphs, each node in the data
structure may occupy more than one block. Hence,
accesses within a node may have different addressing
direction than the traversal direction through the nodes.
Due to this noise, the stream may not be identified and the
prefetch opportunity is wasted. Third, regular streams for
array accesses are often repeated. Penalty occurs for re-
establishing a repeated stream. Fourth, an established
stream may be ended before being removed from the
prefetch table. A hit to a dead stream causes inaccurate
prefetches. Performance evaluations based on SPEC
applications show that the enhanced stream prefetcher
improves 37.6%, 41.6%, and 54.5% of CPI for the three
cache configurations with respect to the base design
without prefetching. In comparison with the original
stream prefetcher, the improvements are 1.8%, 17.6%,
and 18.7% respectively.
1. Introduction

With fast advances in processor technology, the speed
gap has been continuously widening between processors

and main memory. It takes hundreds of processor cycles
to access the memory. Caches play a critical role in
bridging this performance gap. Recently, many efficient
caching mechanisms have been proposed for on-die CMP
caches [15]. However, due to limited cache capacity, the
required working set of applications may not fit into the
cache and causes frequent accesses to the memory.
Therefore, the memory access is often the bottleneck in
processor performance.

Besides caches, the other fundamental approach to
improve memory hierarchy performance is to prefetch the
needed instructions and data before their usage. Existing
data prefetching methods are based on two general
behaviors of the missing block addresses: regularity and
correlation. Existing sequential prefetcher [9], stride
prefetcher [5], distance prefetcher [6,13] and stream
prefetcher [17] dynamically capture the regularity of a
sequence of the missing block addresses to speculatively
prefetch the subsequent blocks. Correlated prefetcher [2],
Markov prefetcher [8], and hot-stream prefetcher [4], on
the other hand, records the history of nearby miss
addresses and their correlations to trigger prefetches
assuming such a correlation will be repeated.

A stream prefetcher captures a sequence of nearby
misses when their addresses follow the same positive or
negative direction in a small memory region. Once a
stream is identified, the prefetcher prefetches consecutive
blocks in the same direction. Two key parameters:
prefetch distance and degree control the aggressiveness of
stream prefetching. The prefetch distance defines the
monitor region and how far ahead to trigger the prefetch.
The prefetch degree defines the number of consecutive
blocks to be prefetched. Due to its simplicity and
effectiveness, the stream-based prefetching scheme has
been used in commercial processors [17].

In this paper, we evaluate several enhancement
techniques for optimizing a stream prefetcher. First, the
stream prefetcher is augmented with a stride distance.
Upon detecting memory accesses with a constant stride of

more than one block, instead of prefetching consecutive
blocks, the stream prefetcher prefetches blocks according
to the stride. Second, we observe that in a few
applications, accessing a data structure through pointers
such as trees and graphs, each node in the data structure
may occupy more than one block. Hence, accesses within
a node may have different addressing direction than the
traversal direction through the nodes. When such a case is
detected, we allow a stream to be formed by ignoring the
noise, i.e. an adjacent block access in the opposite
direction. Third, we observed that regular streams for
array accesses are often repeated. To reduce the penalty of
re-initiating a stream, we allow a previous repeated
stream to launch again after the old stream is dead by
remembering and using the stream’s starting block
address. Fourth, a short stream may be dead before being
replaced from the stream table. Subsequent hit to a dead
stream initiates prefetching without going through the
needed training stage. By detecting and removing aging
short streams from the stream table, it provides more
accurate prefetching.

Performance evaluations based on a set of SPEC2000
and SPEC2006 applications show that the enhanced
stream prefetcher makes significant improvement over the
original stream prefetcher. For the three L2 cache
configurations requested by the competition committee,
the enhanced stream prefetcher improves 37.6%, 41.6%,
and 54.5% of their CPIs with respect to the base design
without prefetching. In comparison with the original
stream prefetcher, the improvements are 1.8%, 17.6%,
and 18.7% respectively.

The remainder of this paper is organized as follows.
Section 2 describes the benefit of constant stride, stream
repetition, as well as the challenge in handling stream
noise and dead stream removal. Section 3 describes the
details of the enhancement techniques. Section 4 provides
the evaluation methodology and Section 5 presents the
evaluation results. Related work is given in Section 6
followed by a brief conclusion in Section 7.

2. Enhancement Techniques
2.1. Constant Stride Optimization

Examing scanner.c in Art as shown in Figure 1, we can
identify constant-stride accesses that across multiple
blocks. The memory references in this routine causes 80%
of all misses on the baseline 1MB L2 cache without
prefetching. In the memory allocation part, the size of
each element of array bus is 88 bytes, so is the same for
tds. Each element of two arrays bus and tds are allocated
one-by-one in a round-robin fashion. Therefore, two
adjacent elements in bus are 192 bytes apart after padding
the arrays with 16 bytes. In this routine, a regular stream
prefetcher still prefetches consecutive blocks for
accessing array bus. As a result, 2 out of 3 prefetched

blocks are wasted. In the enhanced prefetcher, the stride
in term of bytes is recorded and used to calculate the
correct blocks to prefetch.

2.2. Noise Removal

When a training stream is failed, the subsequent misses
must first fetch from one direction, then turn around to the
opposite direction. After careful examining the
unsuccessfully trained streams in Soplex, it is interesting
to see that out of 11484 unsuccessfully trained streams,
7343 are due to an access to the next adjacent block in the
positive direction (i.e. a positive distance of one block).
This is due to the fact that each record occupies two
adjacent cache blocks. Multiple accesses to the record
create a positive one distance. However, the subsequent
accesses to the next record are in the negative direction.
To remedy this problem, we allow a training stream to
stay untrained when subsequent misses occur in the
opposite direction but one of the misses in the opposite
direction is accessing the adjacent block. This adjacent
block access is ignored in training the stream.

2.3. Early Launch of Repeat Stream

The repetition of a stream can also be observed from
scanner.c in Figure 1. The nested loop causes the stream
of accessing array bus repeated for 11 times with exactly
the same start and end addresses. The repetition of the
stream is separated only by a few instructions. Therefore,
it is beneficial to trigger the stream prefetch again from
the starting address when the current stream is coming to
an end. Early launching a repeated stream can reduce the
penalty of initiating a new stream.

2.4. Dead Steam Removal

When a short stream is inactive for longer than 100K
cycles, it is likely that the stream has come to an end.
These dead streams may still stay in the stream table and
can accidentally catch an incoming memory access to
trigger incorrect prefetches. These prefetches may pollute
the cache and cause memory bandwidth contention.
Simulations reveal that given a stream history table of 128

Memory Allocation:
 for (i=0;i<numf1s;i++)
 { //numf1s = 10000,numf2s = 11
 bus[i] = (double *)malloc(numf2s*sizeof(double));
 tds[i] = (double *)malloc(numf2s*sizeof(double));
 }
Memory Access:
 for (tj=0;tj<numf2s;tj++) {
 Y[tj].y = 0;
 if (!Y[tj].reset)
 for (ti=0;ti<numf1s;ti++)
 Y[tj].y += f1_layer[ti].P * bus[ti][tj];
 }

Figure 1. Code segment from Art

entries, Ammp has 60.5% of 21297 trained streams stay
in the stream table longer than 100K cycles without
triggering any prefetch. Art has 88.2% of 6057 trained
streams turned dead before being replaced. Simulation
results also indicate that very few blocks prefetched by a
dead stream get reused. Although a smaller table size can
naturally replace streams before they die, however,
smaller tables may suffer insufficient space to keep all the
active streams. Hence, by removing dead streams
dynamically, all active streams can be maintained without
holding many dead streams.

3. Prefetcher Design
Before a stream is established for prefetching in a

stream prefetcher, it must be qualified through a training
stage. A stream is trained when three cache misses are
located in a small memory region (called a training
window or region) and their addresses follow the same
positive or negative direction. Afterwards, when another
memory request falls into the monitored region of a
trained stream, it triggers the prefetches of the subsequent
blocks. The monitored region is defined by the prefetch
distance and the number of consecutive prefetched blocks
is referred as the degree of prefetch. A training table and
a stream table are used to record the streams in the
respective training and prefetching stages. The detailed
operations of these two stages and the contents of the two
tables are described in the following subsections.

3.1. Training

The procedure of training a stream works as follows.

1. For accommodating the stream training, each entry in
the training table consists of a 26-bit starting block
address to record the first miss address in the region,
and a 5-bit distance to record the distance (blocks)
from the second miss to the first miss in the region. In
our experiment, the training window has 32 blocks.

2. When a cache miss occurs, it first looks for an entry in
the training table whose starting address is within
positive or negative 16 blocks, i.e. falling into the
training window of an existing stream. If none is
found, create a new entry for the missing block.

3. If a match is found and the entry has not been marked
by a second miss, the entry is then marked by
recording the distance in terms of the number of
blocks from the first miss.

4. When a miss matches a marked entry, the third miss is
identified within the training window. In this case,
there are three conditions.
a. If the third miss is in same direction as the second

miss, the stream is trained and moved to the stream
table. The stream’s monitored region is initialized in
the stream table ready for prefetching the stream.

b. If the third miss is in the opposite direction from the
second miss, but the distance between the first and
the second miss is a single block, then ignore the
second miss address, and re-establish the distance
from the first miss using the third miss for
continuing the training. In this case, the second miss
is treated as a noise.

c. If the third miss is in the opposite direction from the
second miss, and the distance between the first and
the second miss is not a single block, then remove
the first miss from the entry. The second and the
third misses are treated now as the new first and
second misses for continuing the training.

3.2 Prefetching

The procedure of enhancing the stream prefetching
consists of the following steps.

1. An entry is created when a trained stream is moved
from the training table to the stream table including
the following information.
a. Start block address (26 bits): block address of the

first miss that initiates the stream.
b. End address (32 bits): the ending byte address of

the stream monitored region, i.e. the last
prefetching address. Note that byte address is
necessary for stride prefetching.

c. Last address (16 bits): the distance from the last
access to the ending address. This distance is used
to figure out the stride.

d. Direction (1 bit): the direction of the stream.
e. Stride (9 bits): stride distance up to 8 blocks.
f. Stride-enable (1 bit): stride or stream.
g. Repeat (1bit): indicator of a repeated stream.
h. Timestamp (32 bits): the time of last prefetch

2. All L2 requests look up the stream table for triggering
stream or stride prefetching. In case a match is found
in a monitored region of a stream, it prefetches the
subsequent blocks based on the prefetch distance,
degree, and stride. In this experiment, we detect
prefetches in a 64-block region with the prefetch
degree of 4.

3. After prefetching 4 blocks, the monitored region is
moved forward by 4 blocks in the prefetching
direction similar to the original stream prefetcher.

4. The default of stream prefetcher is to prefetch
consecutive blocks. However, constant stride over one
block can be detected dynamically and used for stride
prefetching. The stride distance of the current access is
always saved in each entry of the stream table. In case
the next stride matches the previous stride, a stride-
enable indicator is turned on and the subsequent
prefetches will be based on the recorded stride.
However, whenever a new stride mismatches the
recorded stride, the stride-enable is turned off and the

prefetch is reset to the default prefetching of
consecutive blocks.

5. To detect repeated streams, a search to the stream table
is carried out whenever a stream monitor region is
forwarded after prefetches. The detection and early
prefetching of repeated stream works as follows. A
timestamp is inserted for each stream in the stream
table. The timestamp indicates the time when the last
prefetch was triggered by the respective stream. When
the forwarded window overlaps with monitored region
of another stream, a repeated stream is discovered
under three conditions. First, the timestamp of the
overlapped stream must be sufficiently old. Second,
the two streams must have their starting addresses
closely to each other. Third, the length of both streams
must be sufficiently long. Upon detecting a repeated
stream, prefetching of the initial 4 blocks is triggered
without any delay. Meanwhile, a repeat indicator is
turned on for updating the starting address for the
repeated stream when the address becomes available.

6. Finally, for early removal of a dead stream, the stream
table is searched periodically. A dead stream is
identified when its timestamp shows the stream has
not triggered any prefetch for a long time and the
length of the stream is very short. Upon discovery, the
dead streams are removed from the stream table.

4. Evaluation Methodology
To demonstrate the advantages of the enhanced stream

prefetcher, we selected twelve benchmarks with high L2
Misses-Per-thousand-Instructions (MPKI) from
SPEC2000 and SPEC2006. Trace-driven simulations
were carried out using the CMPsim tool set provided by
the First JILP Data Prefetching Championship
competition committee [21]. The traces were collected
from each benchmark by fast-forwarding 40 billion
instructions, and then collected traces for the next 100
million instructions.

Table 1. Simulator Configuration

Issue width 4
Instruction Window 128 entries
L1 cache 32KB, 8-way,I/D caches, 1 cycle
L2 cache 512KB/2MB, 16-way, 20 cycles
Memory latency 200 cycles
Configuration 1 (c1) 2MB L2, 1000 requests/cycle
Configuration 2 (c2) 2MB L2, 1 request/10 cycles
Configuration 3 (c3) 512KB L2, 1000 requests/cycle

The simulation framework models an out-of-order core
with the basic parameters as outlined in Table 1. Two L2
cache sizes and two memory bandwidths are considered
resulting in three L2 cache configurations as requested by
the competition committee.

We evaluate and compare three prefetch schemes,
including the PC-based Distance prefetcher using a
Global History Buffer (GHB-Distance), the original
Stream prefetcher (Stream) and the Enhanced Stream
prefetcher (Enhance-Stream). All prefetchers prefetch
memory blocks directly into the L2 cache. The simulated
table sizes for the three prefetchers are listed in Table 2.
Both the prefetch width and depth for GHB-distance are
16. The prefetch degree and distance are 4 and 64
respectively for both stream-based prefetchers. Under the
allowable space budget, we simulate multiple table sizes
for maintaining the stream history and selected the size
that demonstrates the highest performance for both
stream-based prefetchers. For achieving the best
performance, the results show that both stream prefetchers
require very little history.

Table 2. Prefetcher Configurations
Prefetcher Table configuration Size
GHB-
distance

256 IT entries, 256 GHB
entries

4KB

Stream 8 combined entries 64B
Enhance-
Stream

16 training entries, 8 stream
entries

256B

5. Experimental Results and Analyses
Figure 2 shows the CPI comparisons of the three

prefetching schemes where the CPIs are normalized to the
base CPI without any prefetching scheme. In this figure,
the twelve selected benchmarks are sorted from left to
right in the descending order of the MPKI. We can make
several important observations. First, on an average of all
workloads, the performance improvements over the base
CPI are 26.8%, 36.5%, and 37.6% for GHB-Distance,
Stream, and Enhance-Stream prefetchers under the c1
configuration, 16.2%, 29.1%, and 41.6% for the c2
configuration, and 26.0%. 44.1% and 54.5% for the c3
configuration, respectively. Overall, Enhance-Stream
outperforms GHB-Distance and Stream by about 30.3%
and 14.1%.

Second, different benchmarks show very different
results with respect to the three prefetching schemes.
Enhance-Stream is most effective for Art and Mcf which
have the highest MPKI. Detailed analysis shows that both
Art and Mcf benefit stride prefetching significantly. Third,
GHB-Distance performs significantly worse than the
other two schemes for most applications. However, it has
slight edge on Ammp and Omnetpp. Fourth, among the
four enhancement techniques, stride prefetching gains the
most benefit. For Art and Mcf, the performance gains
from stride prefetching are about 44.6% and 27.6%
respectively. Noise removal is effective for Soplex
showing a performance gain about 1%. Early prefetching
of repeated stream works well for Art with about 2.2%
improvement. The dead stream removal is very effective

Figure 2. CPI comparisons for the three prefetching schemes

in many applications. We also observe that integrations of
multiple enhancement techniques may cause interferences
with one another in different applications. The results of
Enhance-Stream are simulated with the combination of all
four techniques.

The sizes of the training table and the stream table
impact the overall prefetch performance. In Figure 3, we
show the overall average CPI of all three configurations
of different table sizes used in Enhance-Stream. For the
stream table, we simulate six table sizes with 4, 8, 16, 32,
64, and 128 entries. For each stream table size of n entries,
we simulate three training table sizes with the number of
entries equal to n, 2n, and 4n. It is interesting to observe
that the stream table of 8 entries has the lowest overall
CPI indicating the number of active streams is very small
in all applications. Increasing the stream table size beyond
8 can degrade the performance. This is due to the fact that
many inactive streams are kept in the stream table and
cause inaccurate prefetching. When the number of the
stream table entries reduce to 4, the insufficient space to
hold all active streams reduce the overall improvement.
The performance improvement is rather insensitive to the
training table size. In general, the training table that has
twice as much entry than that in the stream table shows
the best overall performance.

Figure 3. Sensitivity on stream history table sizes;
(notation: size = stream table size / three training table
sizes)

6. Related Work
There have been many software and hardware oriented

prefetching proposals to alleviate performance penalties
on cache misses [11,19,10,1,20]. Traditional hardware-
oriented sequential or stride-based prefetchers work well
for applications with regular memory access patterns
[3,9]. Stream prefetchers [14,17,18] are widely used in
industry due to its simplicity and effectiveness. Stream
prefetchers prefetch sequential blocks after misses in the
same direction are detected. The prefetching stream
continues as long as accesses fall on its monitored region.
However, in many modern applications and runtime
environments, dynamic memory allocations and Linked
Data Structure (LDS) accesses are very common. It is
difficult to accurately prefetch the LDS due to their
irregular address patterns. Correlated and Markov
prefetchers [2,8] record patterns of miss addresses and use
the past miss correlations to predict future cache misses.
These approaches require a huge history table to record
the past miss correlations. Global History Buffer [12] can
efficiently use table size and keep history fresh. It can be
used to implement both stride/distance based prefetchers
and the correlated prefetchers. A tag-correlating
prefetcher uses much bigger block correlations to reduce
the history size [7]. Besides the history size, correlation-
based prefetchers also face challenges in providing
accurate and timely prefetches. A memory-side
correlation-based prefetcher is presented in [16] where the
history size becomes less of a problem by moving it to
memory. To handle timely prefetches, a chain of
prefetches based on pair-wise correlation history can be
triggered. Accuracy and memory traffic, however, remain
difficult issues.

7. Conclusion
In this paper, we report enhancement techniques to

improve the stream prefetcher. Based on the simulation
model and workloads provided by the prefetch

competition committee, our evaluation results show that
the enhanced stream prefetcher improves 37.6%, 41.6%,
and 54.5% of CPI for the three cache configurations with
respect to the base design without prefetching. In
comparison with the original stream prefetcher, the
improvements are 1.8%, 17.6%, and 18.7% respectively.
We also show that the space overhead of implementing an
enhanced stream prefetcher is very minimum.

Acknowledgement
This work is supported in part by a research donation

from Intel Corp. and by the National Science Foundation
under CRI collaborative awards 0751112, 0750847,
0750851, 0750852, 0750860, 0750868, 0750884, and
0751091. Any opinions, findings and conclusions or
recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of
Intel Corp. and the NSF.
References
[1] B. Cahoon, K.S. McKinley, “Data Flow Analysis for
Software Prefetching Linked Data Structures in Java”,
Proc. of 10th PACT, 2001.
[2] M. Charney and A. Reeves. “Generalized Correlation
Based Hardware Prefetching,” Technical Report EE-
CEG-95-1, Cornell University, February 1995.
[3] T. Chen, J. Baer, “Reducing Memory Latency Via
Non-Blocking and Prefetching Caches,” Proc. of 5th Int'l
Conf. on Architectural Support for Programming
Languages and Operating Systems, Oct. 1992, pp. 51-61.
[4] T.M. Chilimbi, “On the Stability of Temporal Data
Reference Profiles. Proc. of 8th PACT, Sept. 2002.
[5] J. Fu, J. Patel, B. Janssens: Stride directed prefetching
in scalar processors. MICRO 1992: 102-110.
[6] G. Handiraju and A.Sivasubramaniam,”Going the
Distance for TLB Prefetching: An Application-driven
Study”, Proc. of 29th ISCA, June 2002.
[7] Z. Hu, M. Martonosi, S. Kaxiras, “TCP: Tag
Correlating Prefetchers,” Proc. of 9th Ann Int’l Symp. on
HPCA, Feb 2003.
[8] D. Joseph, and D. Grunwald, “Prefetching Using
Markov Predictors,” Proc. of 26th ISCA, Jun 1997.
[9] N. P. Jouppi, “Improving Direct-Mapped Cache
Performance by the Addition of a Small Fully-Associative
Cache and Prefetch Buffers,” Proc. of 17th ISCA, May
1990.
[10] C. Luk, T. C. Mowry, “Compiler-Based Prefetching
for Recursive Data Structures”, Proc. of 7th Int'l Conf. on
Architectural Support for Programming Languages and
Operating Systems, Boston, MA, Oct. 1996, pp. 222-233.
[11] T. C. Mowry, M. S. Lam, A. Gupta, “Design and
Evaluation of a Compiler Algorithm for Prefetching”,
Proc. of 5th Int'l Conf. on Architectural Support for
Programming Languages and Operating Systems, Oct.
1992.

[12] K. Nesbit and J. Smith, “Data Cache Prefetching
Using a Global History Buffer,” Proc. of 10th HPCA, Feb.
2004.
[13] K. Nesbit, A. Dhodapkar and J. Smith, “AC/DC: An
Adaptive Data Cache Prefetcher”, Proc. of 10th PACT,
Sept. 2004.
[14] S. Palacharla and R. Kessler. Evaluating stream
buffers as a secondary cache replacement. Proc. of 21st
ISCA, June 1994.
[15] M. Qureshi A. Jaleel, Y. Patt, S.Steely, J. Emer,
“Adaptive Insertion Policies for High Performance
Caching”, Proc. of 34th ISCA, June 2007
[16] Y. Solihin, J. Lee, and J. Torrellas, “Using a User-
Level Memory Thread for Correlation Prefetching,” Proc.
of 29th ISCA, May 2002.
[17] Santhosh Srinath, Yale N. Patt, “Feedback Directed
Prefetching: Improving the Performance and Bandwidth-
Efficiency of Hardware Prefetchers. Proc. of 13th Ann
Int’l Symp. on HPCA, Feb 2007.
[18] J. Tendler, S. Dodson, S. Fields, H. Le, and B.
Sinharoy. POWER4 system microarchitecture. IBM
Technical White Paper, Oct. 2001.
[19] S. Vanderwiel, and D. Lilja, “Data Prefetch
Mechanisms,” ACM Computing Surveys, June 2000.
[20] Z. Wang, D. Burger, K. S. McKinley, S. K.
Reinhardt and C. C. Weems, “Guided Region Prefetching:
a Cooperative Hardware/Software Approach,” Proc. of
30th ISCA, June 2003.
[21] The 1st JILP Data Prefetching Championship (DPC-
1). http://www.jilp.org/dpc/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

