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Abstract 
One fundamental approach to improve memory 

hierarchy performance is to prefetch the needed 
instructions and data before their usage when cache 
capacity is limited. A stream prefetcher captures a 
sequence of nearby misses when their addresses follow 
the same positive or negative direction in a small memory 
region [17]. Once a stream of cache misses is identified, 
the prefetcher prefetches consecutive blocks in the same 
direction. 

In this paper, we describe several enhancement 
techniques to improve weakness of existing stream-based 
prefetchers. First, the existing stream prefetcher does not 
take streams with constant stride into consideration. For 
long-stride accesses across more than one block, 
prefetching consecutive blocks is wasteful and pollutes 
the cache. Second, in accessing a data structure through 
pointers such as trees and graphs, each node in the data 
structure may occupy more than one block. Hence, 
accesses within a node may have different addressing 
direction than the traversal direction through the nodes. 
Due to this noise, the stream may not be identified and the 
prefetch opportunity is wasted. Third, regular streams for 
array accesses are often repeated. Penalty occurs for re-
establishing a repeated stream. Fourth, an established 
stream may be ended before being removed from the 
prefetch table. A hit to a dead stream causes inaccurate 
prefetches. Performance evaluations based on SPEC 
applications show that the enhanced stream prefetcher 
improves 37.6%, 41.6%, and 54.5% of CPI for the three 
cache configurations with respect to the base design 
without prefetching. In comparison with the original 
stream prefetcher, the improvements are 1.8%, 17.6%, 
and 18.7% respectively. 
1. Introduction 

With fast advances in processor technology, the speed 
gap has been continuously widening between processors 

and main memory. It takes hundreds of processor cycles 
to access the memory. Caches play a critical role in 
bridging this performance gap. Recently, many efficient 
caching mechanisms have been proposed for on-die CMP 
caches [15]. However, due to limited cache capacity, the 
required working set of applications may not fit into the 
cache and causes frequent accesses to the memory. 
Therefore, the memory access is often the bottleneck in 
processor performance.  

Besides caches, the other fundamental approach to 
improve memory hierarchy performance is to prefetch the 
needed instructions and data before their usage. Existing 
data prefetching methods are based on two general 
behaviors of the missing block addresses: regularity and 
correlation. Existing sequential prefetcher [9], stride 
prefetcher [5], distance prefetcher [6,13] and stream 
prefetcher [17] dynamically capture the regularity of a 
sequence of the missing block addresses to speculatively 
prefetch the subsequent blocks. Correlated prefetcher [2], 
Markov prefetcher [8], and hot-stream prefetcher [4], on 
the other hand, records the history of nearby miss 
addresses and their correlations to trigger prefetches 
assuming such a correlation will be repeated.  

A stream prefetcher captures a sequence of nearby 
misses when their addresses follow the same positive or 
negative direction in a small memory region. Once a 
stream is identified, the prefetcher prefetches consecutive 
blocks in the same direction. Two key parameters: 
prefetch distance and degree control the aggressiveness of 
stream prefetching. The prefetch distance defines the 
monitor region and how far ahead to trigger the prefetch. 
The prefetch degree defines the number of consecutive 
blocks to be prefetched. Due to its simplicity and 
effectiveness, the stream-based prefetching scheme has 
been used in commercial processors [17].  

In this paper, we evaluate several enhancement 
techniques for optimizing a stream prefetcher. First, the 
stream prefetcher is augmented with a stride distance. 
Upon detecting memory accesses with a constant stride of 



more than one block, instead of prefetching consecutive 
blocks, the stream prefetcher prefetches blocks according 
to the stride. Second, we observe that in a few 
applications, accessing a data structure through pointers 
such as trees and graphs, each node in the data structure 
may occupy more than one block. Hence, accesses within 
a node may have different addressing direction than the 
traversal direction through the nodes. When such a case is 
detected, we allow a stream to be formed by ignoring the 
noise, i.e. an adjacent block access in the opposite 
direction. Third, we observed that regular streams for 
array accesses are often repeated. To reduce the penalty of 
re-initiating a stream, we allow a previous repeated 
stream to launch again after the old stream is dead by 
remembering and using the stream’s starting block 
address. Fourth, a short stream may be dead before being 
replaced from the stream table. Subsequent hit to a dead 
stream initiates prefetching without going through the 
needed training stage. By detecting and removing aging 
short streams from the stream table, it provides more 
accurate prefetching. 

Performance evaluations based on a set of SPEC2000 
and SPEC2006 applications show that the enhanced 
stream prefetcher makes significant improvement over the 
original stream prefetcher. For the three L2 cache 
configurations requested by the competition committee, 
the enhanced stream prefetcher improves 37.6%, 41.6%, 
and 54.5% of their CPIs with respect to the base design 
without prefetching. In comparison with the original 
stream prefetcher, the improvements are 1.8%, 17.6%, 
and 18.7% respectively. 

The remainder of this paper is organized as follows. 
Section 2 describes the benefit of constant stride, stream 
repetition, as well as the challenge in handling stream 
noise and dead stream removal. Section 3 describes the 
details of the enhancement techniques. Section 4 provides 
the evaluation methodology and Section 5 presents the 
evaluation results. Related work is given in Section 6 
followed by a brief conclusion in Section 7. 

2. Enhancement Techniques 
2.1. Constant Stride Optimization 

Examing scanner.c in Art as shown in Figure 1, we can 
identify constant-stride accesses that across multiple 
blocks. The memory references in this routine causes 80% 
of all misses on the baseline 1MB L2 cache without 
prefetching. In the memory allocation part, the size of 
each element of array bus is 88 bytes, so is the same for 
tds. Each element of two arrays bus and tds are allocated 
one-by-one in a round-robin fashion. Therefore, two 
adjacent elements in bus are 192 bytes apart after padding 
the arrays with 16 bytes. In this routine, a regular stream 
prefetcher still prefetches consecutive blocks for 
accessing array bus. As a result, 2 out of 3 prefetched 

blocks are wasted. In the enhanced prefetcher, the stride 
in term of bytes is recorded and used to calculate the 
correct blocks to prefetch. 

 

 
 
 
 
 
 
 
 
 
 
 
 

2.2. Noise Removal  

When a training stream is failed, the subsequent misses 
must first fetch from one direction, then turn around to the 
opposite direction. After careful examining the 
unsuccessfully trained streams in Soplex, it is interesting 
to see that out of 11484 unsuccessfully trained streams, 
7343 are due to an access to the next adjacent block in the 
positive direction (i.e. a positive distance of one block). 
This is due to the fact that each record occupies two 
adjacent cache blocks. Multiple accesses to the record 
create a positive one distance. However, the subsequent 
accesses to the next record are in the negative direction. 
To remedy this problem, we allow a training stream to 
stay untrained when subsequent misses occur in the 
opposite direction but one of the misses in the opposite 
direction is accessing the adjacent block. This adjacent 
block access is ignored in training the stream. 

2.3. Early Launch of Repeat Stream 

The repetition of a stream can also be observed from 
scanner.c in Figure 1. The nested loop causes the stream 
of accessing array bus repeated for 11 times with exactly 
the same start and end addresses. The repetition of the 
stream is separated only by a few instructions. Therefore, 
it is beneficial to trigger the stream prefetch again from 
the starting address when the current stream is coming to 
an end. Early launching a repeated stream can reduce the 
penalty of initiating a new stream. 

2.4. Dead Steam Removal 

When a short stream is inactive for longer than 100K 
cycles, it is likely that the stream has come to an end. 
These dead streams may still stay in the stream table and 
can accidentally catch an incoming memory access to 
trigger incorrect prefetches. These prefetches may pollute 
the cache and cause memory bandwidth contention. 
Simulations reveal that given a stream history table of 128 

Memory Allocation: 
   for (i=0;i<numf1s;i++)   
    { //numf1s = 10000,numf2s = 11 
      bus[i] = (double *)malloc(numf2s*sizeof(double)); 
      tds[i] = (double *)malloc(numf2s*sizeof(double)); 
    } 
Memory Access: 
   for (tj=0;tj<numf2s;tj++) { 
     Y[tj].y = 0; 
     if ( !Y[tj].reset ) 
       for (ti=0;ti<numf1s;ti++) 
          Y[tj].y += f1_layer[ti].P * bus[ti][tj]; 
   } 

Figure 1. Code segment from Art  



entries, Ammp has 60.5% of 21297 trained streams stay 
in the stream table longer than 100K cycles without 
triggering any prefetch. Art has 88.2% of 6057 trained 
streams turned dead before being replaced. Simulation 
results also indicate that very few blocks prefetched by a 
dead stream get reused. Although a smaller table size can 
naturally replace streams before they die, however, 
smaller tables may suffer insufficient space to keep all the 
active streams. Hence, by removing dead streams 
dynamically, all active streams can be maintained without 
holding many dead streams. 

3. Prefetcher Design 
Before a stream is established for prefetching in a 

stream prefetcher, it must be qualified through a training 
stage. A stream is trained when three cache misses are 
located in a small memory region (called a training 
window or region) and their addresses follow the same 
positive or negative direction. Afterwards, when another 
memory request falls into the monitored region of a 
trained stream, it triggers the prefetches of the subsequent 
blocks. The monitored region is defined by the prefetch 
distance and the number of consecutive prefetched blocks 
is referred as the degree of prefetch. A training table and 
a stream table are used to record the streams in the 
respective training and prefetching stages. The detailed 
operations of these two stages and the contents of the two 
tables are described in the following subsections. 

3.1. Training 

The procedure of training a stream works as follows. 

1. For accommodating the stream training, each entry in 
the training table consists of a 26-bit starting block 
address to record the first miss address in the region, 
and a 5-bit distance to record the distance (blocks) 
from the second miss to the first miss in the region. In 
our experiment, the training window has 32 blocks. 

2. When a cache miss occurs, it first looks for an entry in 
the training table whose starting address is within 
positive or negative 16 blocks, i.e. falling into the 
training window of an existing stream. If none is 
found, create a new entry for the missing block.  

3. If a match is found and the entry has not been marked 
by a second miss, the entry is then marked by 
recording the distance in terms of the number of 
blocks from the first miss.  

4. When a miss matches a marked entry, the third miss is 
identified within the training window. In this case, 
there are three conditions. 
a.  If the third miss is in same direction as the second 

miss, the stream is trained and moved to the stream 
table. The stream’s monitored region is initialized in 
the stream table ready for prefetching the stream.  

b.  If the third miss is in the opposite direction from the 
second miss, but the distance between the first and 
the second miss is a single block, then ignore the 
second miss address, and re-establish the distance 
from the first miss using the third miss for 
continuing the training. In this case, the second miss 
is treated as a noise. 

c. If the third miss is in the opposite direction from the 
second miss, and the distance between the first and 
the second miss is not a single block, then remove 
the first miss from the entry.  The second and the 
third misses are treated now as the new first and 
second misses for continuing the training. 

3.2 Prefetching 

The procedure of enhancing the stream prefetching 
consists of the following steps. 

1. An entry is created when a trained stream is moved 
from the training table to the stream table including 
the following information. 
a. Start block address (26 bits): block address of the 

first miss that initiates the stream. 
b. End address (32 bits): the ending byte address of 

the stream monitored region, i.e. the last 
prefetching address. Note that byte address is 
necessary for stride prefetching. 

c. Last address (16 bits): the distance from the last 
access to the ending address. This distance is used 
to figure out the stride. 

d. Direction (1 bit): the direction of the stream. 
e. Stride (9 bits): stride distance up to 8 blocks. 
f. Stride-enable (1 bit): stride or stream. 
g. Repeat (1bit): indicator of a repeated stream. 
h. Timestamp (32 bits): the time of last prefetch 

2. All L2 requests look up the stream table for triggering 
stream or stride prefetching. In case a match is found 
in a monitored region of a stream, it prefetches the 
subsequent blocks based on the prefetch distance, 
degree, and stride. In this experiment, we detect 
prefetches in a 64-block region with the prefetch 
degree of 4. 

3. After prefetching 4 blocks, the monitored region is 
moved forward by 4 blocks in the prefetching 
direction similar to the original stream prefetcher. 

4. The default of stream prefetcher is to prefetch 
consecutive blocks. However, constant stride over one 
block can be detected dynamically and used for stride 
prefetching. The stride distance of the current access is 
always saved in each entry of the stream table. In case 
the next stride matches the previous stride, a stride-
enable indicator is turned on and the subsequent 
prefetches will be based on the recorded stride. 
However, whenever a new stride mismatches the 
recorded stride, the stride-enable is turned off and the 



prefetch is reset to the default prefetching of 
consecutive blocks. 

5. To detect repeated streams, a search to the stream table 
is carried out whenever a stream monitor region is 
forwarded after prefetches. The detection and early 
prefetching of repeated stream works as follows. A 
timestamp is inserted for each stream in the stream 
table. The timestamp indicates the time when the last 
prefetch was triggered by the respective stream. When 
the forwarded window overlaps with monitored region 
of another stream, a repeated stream is discovered 
under three conditions. First, the timestamp of the 
overlapped stream must be sufficiently old. Second, 
the two streams must have their starting addresses 
closely to each other. Third, the length of both streams 
must be sufficiently long. Upon detecting a repeated 
stream, prefetching of the initial 4 blocks is triggered 
without any delay. Meanwhile, a repeat indicator is 
turned on for updating the starting address for the 
repeated stream when the address becomes available. 

6. Finally, for early removal of a dead stream, the stream 
table is searched periodically. A dead stream is 
identified when its timestamp shows the stream has 
not triggered any prefetch for a long time and the 
length of the stream is very short. Upon discovery, the 
dead streams are removed from the stream table.  

4. Evaluation Methodology 
To demonstrate the advantages of the enhanced stream 

prefetcher, we selected twelve benchmarks with high L2 
Misses-Per-thousand-Instructions (MPKI) from 
SPEC2000 and SPEC2006. Trace-driven simulations 
were carried out using the CMPsim tool set provided by 
the First JILP Data Prefetching Championship 
competition committee [21]. The traces were collected 
from each benchmark by fast-forwarding 40 billion 
instructions, and then collected traces for the next 100 
million instructions.   

Table 1. Simulator Configuration 

Issue width 4 
Instruction Window 128 entries 
L1 cache 32KB, 8-way,I/D caches, 1 cycle 
L2 cache 512KB/2MB, 16-way, 20 cycles 
Memory latency 200 cycles 
Configuration 1 (c1) 2MB L2, 1000 requests/cycle 
Configuration 2 (c2) 2MB L2, 1 request/10 cycles 
Configuration 3 (c3) 512KB L2, 1000 requests/cycle 

The simulation framework models an out-of-order core 
with the basic parameters as outlined in Table 1. Two L2 
cache sizes and two memory bandwidths are considered 
resulting in three L2 cache configurations as requested by 
the competition committee.  

We evaluate and compare three prefetch schemes, 
including the PC-based Distance prefetcher using a 
Global History Buffer (GHB-Distance), the original 
Stream prefetcher (Stream) and the Enhanced Stream 
prefetcher (Enhance-Stream). All prefetchers prefetch 
memory blocks directly into the L2 cache. The simulated 
table sizes for the three prefetchers are listed in Table 2. 
Both the prefetch width and depth for GHB-distance are 
16. The prefetch degree and distance are 4 and 64 
respectively for both stream-based prefetchers. Under the 
allowable space budget, we simulate multiple table sizes 
for maintaining the stream history and selected the size 
that demonstrates the highest performance for both 
stream-based prefetchers. For achieving the best 
performance, the results show that both stream prefetchers 
require very little history. 

Table 2. Prefetcher Configurations 
Prefetcher Table configuration Size  
GHB-
distance 

256 IT entries, 256 GHB 
entries 

4KB 

Stream 8 combined entries 64B 
Enhance-
Stream 

16 training entries, 8 stream 
entries 

256B 

5. Experimental Results and Analyses 
Figure 2 shows the CPI comparisons of the three 

prefetching schemes where the CPIs are normalized to the 
base CPI without any prefetching scheme. In this figure, 
the twelve selected benchmarks are sorted from left to 
right in the descending order of the MPKI. We can make 
several important observations. First, on an average of all 
workloads, the performance improvements over the base 
CPI are 26.8%, 36.5%, and 37.6% for GHB-Distance, 
Stream, and Enhance-Stream prefetchers under the c1 
configuration, 16.2%, 29.1%, and 41.6% for the c2 
configuration, and 26.0%. 44.1% and 54.5% for the c3 
configuration, respectively. Overall, Enhance-Stream 
outperforms GHB-Distance and Stream by about 30.3% 
and 14.1%.  

Second, different benchmarks show very different 
results with respect to the three prefetching schemes. 
Enhance-Stream is most effective for Art and Mcf which 
have the highest MPKI. Detailed analysis shows that both 
Art and Mcf benefit stride prefetching significantly. Third, 
GHB-Distance performs significantly worse than the 
other two schemes for most applications. However, it has 
slight edge on Ammp and Omnetpp. Fourth, among the 
four enhancement techniques, stride prefetching gains the 
most benefit. For Art and Mcf, the performance gains 
from stride prefetching are about 44.6% and 27.6% 
respectively. Noise removal is effective for Soplex 
showing a performance gain about 1%. Early prefetching 
of repeated stream works well for Art with about 2.2% 
improvement. The dead stream removal is very effective  



 
Figure 2. CPI comparisons for the three prefetching schemes 

in many applications. We also observe that integrations of 
multiple enhancement techniques may cause interferences 
with one another in different applications. The results of 
Enhance-Stream are simulated with the combination of all 
four techniques. 

The sizes of the training table and the stream table 
impact the overall prefetch performance. In Figure 3, we 
show the overall average CPI of all three configurations 
of different table sizes used in Enhance-Stream. For the 
stream table, we simulate six table sizes with 4, 8, 16, 32, 
64, and 128 entries. For each stream table size of n entries, 
we simulate three training table sizes with the number of 
entries equal to n, 2n, and 4n. It is interesting to observe 
that the stream table of 8 entries has the lowest overall 
CPI indicating the number of active streams is very small 
in all applications. Increasing the stream table size beyond 
8 can degrade the performance. This is due to the fact that 
many inactive streams are kept in the stream table and 
cause inaccurate prefetching. When the number of the 
stream table entries reduce to 4, the insufficient space to 
hold all active streams reduce the overall improvement. 
The performance improvement is rather insensitive to the 
training table size. In general, the training table that has 
twice as much entry than that in the stream table shows 
the best overall performance.  

 
Figure 3. Sensitivity on stream history table sizes; 
(notation: size = stream table size / three training table 
sizes) 

 

6. Related Work  
There have been many software and hardware oriented 

prefetching proposals to alleviate performance penalties 
on cache misses [11,19,10,1,20]. Traditional hardware-
oriented sequential or stride-based prefetchers work well 
for applications with regular memory access patterns 
[3,9]. Stream prefetchers [14,17,18] are widely used in 
industry due to its simplicity and effectiveness. Stream 
prefetchers prefetch sequential blocks after misses in the 
same direction are detected. The prefetching stream 
continues as long as accesses fall on its monitored region. 
However, in many modern applications and runtime 
environments, dynamic memory allocations and Linked 
Data Structure (LDS) accesses are very common. It is 
difficult to accurately prefetch the LDS due to their 
irregular address patterns. Correlated and Markov 
prefetchers [2,8] record patterns of miss addresses and use 
the past miss correlations to predict future cache misses. 
These approaches require a huge history table to record 
the past miss correlations. Global History Buffer [12] can 
efficiently use table size and keep history fresh. It can be 
used to implement both stride/distance based prefetchers 
and the correlated prefetchers. A tag-correlating 
prefetcher uses much bigger block correlations to reduce 
the history size [7]. Besides the history size, correlation-
based prefetchers also face challenges in providing 
accurate and timely prefetches. A memory-side 
correlation-based prefetcher is presented in [16] where the 
history size becomes less of a problem by moving it to 
memory. To handle timely prefetches, a chain of 
prefetches based on pair-wise correlation history can be 
triggered. Accuracy and memory traffic, however, remain 
difficult issues.  

7. Conclusion 
In this paper, we report enhancement techniques to 

improve the stream prefetcher. Based on the simulation 
model and workloads provided by the prefetch 



competition committee, our evaluation results show that 
the enhanced stream prefetcher improves 37.6%, 41.6%, 
and 54.5% of CPI for the three cache configurations with 
respect to the base design without prefetching. In 
comparison with the original stream prefetcher, the 
improvements are 1.8%, 17.6%, and 18.7% respectively. 
We also show that the space overhead of implementing an 
enhanced stream prefetcher is very minimum. 
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