
A Dueling Segmented LRU Replacement Algorithm with Adaptive Bypassing

Hongliang Gao Chris Wilkerson
Intel Corporation

{hongliang.gao, chris.wilkerson}@intel.com

Abstract

In this paper we present a high performance
cache replacement algorithm called Dueling
Segmented LRU replacement algorithm with adaptive
Bypassing (DSB). The base algorithm is Segmented
LRU (SLRU) replacement algorithm originally
proposed for disk cache management. We introduce
three enhancements to the base SLRU algorithm.
First, a newly allocated line could be randomly
promoted for better protection. Second, an aging
algorithm is used to remove stale cache lines. Most
importantly, we propose a novel scheme to track
whether cache bypassing is effective. Based on the
tracking results, we can adaptively adjust bypassing
to fit workload behavior. DSB algorithm is
implemented with a policy selector to dynamically
select two variants of SLRU algorithms with different
enhancements.

1. Introduction

This paper describes a Dueling Segmented LRU
replacement algorithm with adaptive Bypassing,
referred to DSB in the paper. The base
Segmented LRU (SLRU) algorithm is described
in Section 2. We propose two simple
enhancements to SLRU algorithm described in
Section 3. In Section 4, we discuss our proposed
adaptive bypassing algorithm that prevents the
allocation of cache lines under certain
circumstances. DSB is implemented with a
policy selector, described in Section 5, which
enables DSB to adaptively select between two
variants of SLRU depending on application
behavior. In Section 6, we describe
implementation cost and configurations of our
algorithm. Section 7 presents performance
results of the proposed algorithm.

2. Segmented LRU Algorithm

SLRU algorithm was originally proposed in [1]
as a cache management algorithm for disk
system. In this paper, we apply it as a processor

cache replacement algorithm. The base SLRU
algorithm augments each cache line with a
reference bit dividing up the traditional LRU list
of cache lines into two logical sub lists, the
referenced list and the non-referenced list. The
referenced-list consists of cache lines with the
referenced bit set, and the non-referenced-list
consists of the remainder of the cache lines.
When choosing a line for replacement the LRU
cache line in the non-referenced list is selected
first. If all cache lines are in the referenced-list
then we select the global LRU cache line from
among all the cache lines in the set.

We propose three enhancements to the SLRU
algorithm in this paper. By selecting which
enhancements are used, we can get different
variants of the SLRU algorithm. Our selected
variants are described in Section 6.

3. SLRU with Random Promotion and
Aging

Traditional implementations of SLRU mark the
reference bit when a cache line is referenced, but
previous work has shown benefit to making
selected random promotions as well [2]. The
random promotion in the SLRU algorithm
allows the reference bit to be randomly set for
newly allocated cache lines. For example, if
promotion probability is 1/32, then 1 in 32
newly allocated lines will be promoted by
marking its reference bit.

Another enhancement to SLRU is an aging
mechanism to allow lines in the referenced list
to be aged or removed from the reference list.
When a cache line is allocated the reference bit
of the LRU element is cleared. We refer to the
process of clearing the reference bit as aging.

4. SLRU with Adaptive Bypassing

The third enhancement to SLRU is our adaptive
bypassing algorithm which prevents the

mailto:@intel.com

allocation of lines in the cache under certain
conditions. Although we only apply it to SLRU
in this paper, it can be coupled with other
replacement algorithms as well. Our experiment
results have shown that it is also helpful for
various other replacement algorithms.

The decision on whether or not to bypass the
cache is made by bypass tracking logic
implemented for each set in the cache. The
bypassing logic evaluates the impact that a
bypassing decision would have on the
performance of the cache.

On each cache miss, we can choose to bypass
the cache and keep the selected victim or we can
replace the victim with the new line. The
selected victim and new line are essentially
competitors for the available cache line. Our
scheme allows us to measure which of these two
lines is more useful and to adjust the bypass
algorithm accordingly.

When a line is selected to bypass the cache,
we would like to assess the impact that the
decision to bypass the line will have on the hit
rate of the set. The decision to bypass is
evaluated by storing the tag of the bypassed line
in a field we refer to as competitor tag. In
addition, we store a pointer to the tag of the
victim line referred as competitor way. It is the
line that would have been replaced without
bypassing. Subsequent references to the set are
compared against the tag of the bypassed line
and the tag of the competitor way. We interpret
a reference to the competitor way before the
bypassed line as an indication of an effective
bypass. Conversely, a reference to the bypassed
line before the competitor way is treated as an
indication of an ineffective bypass. After we
detect whether a bypass is effective/ineffective,
we increase/decrease the bypassing probability.

In some cases we may make a decision not to
bypass a given cache line. In order to assess the
impact of bypassing in this case, we randomly
select some newly allocated lines as “virtually
bypassing” the cache. The line is still allocated
in the cache. Instead, a decision is made to evict
the victim line. The decision not to bypass is
evaluated in much the same way as the decision
to bypass. A pointer to the tag of the allocated
line, the virtually bypassed line in this case, is
stored as well as a copy of the tag of the evicted
line, the victim line in this case. The references

to each of these are tracked and treated similarly
as described for the decision to bypass.

Our bypass algorithm randomly selects newly
allocated cache lines for bypassing. The
probability of making the bypass is determined
by how effective the decisions to bypass have
been in the past as described above. Each
effective bypass doubles the probability that a
future a bypass will occur, for example, if the
current probability is 0.25 the probability will
double to 0.5. Similarly each ineffective bypass
halves the probability of a future bypass, for
example, cutting the current probability of 0.5 to
0.25. For virtual bypassing, we use a fixed
probability.

The minimum bypassing probability is set to
0 that will prevent any bypassing and allocate all
missed lines. Note that even if the probability is
adjusted to 0, we can still track effectiveness of
bypassing through virtual bypassing, which
could turn on bypassing later if program
behavior changes to favor bypassing. The
maximum bypassing probability is set to 1,
which will essentially bypass all cache misses
until the tracking scheme detects ineffective
bypassing decisions.

5. Policy Selector

Our design allows 2 dueling replacement
algorithms to be evaluated concurrently, and
uses a policy selector to select between the 2
algorithms. For example, traditional LRU and
SLRU replacement polices could be evaluated
and the policy selector will attempt to select the
policy that is most appropriate for the
application that is being run.

The policy selector uses set sampling [2][3].
The sampled sets are chosen statically by the
algorithm proposed in [3] and do not vary during
the execution of the workload. We augment
each of these sets with an auxiliary tag directory
(ATD) [3] to concurrently implement both
dueling policies (policy A, policy B) for these
sets. In addition, we use a saturating counter
(policy selector counter) to track the
performance of policy A & B in the sampled sets.

Each reference to the sampled sets will result
in an update to the saturating counter only if
policy A & B yield different results. For
example, if policy A & B are either both hit or
miss, the policy selector counter is not updated.

On the other hand, if policy A is a miss and
policy B is a hit, the policy selector counter is
incremented. Conversely, if policy A produces a
hit but policy B misses the policy selector
counter is decremented.

6. Hardware Cost and Complexity

For a 16-way associative cache, the base
SLRU algorithm requires 5 bits per cache line to
implement. Four bits are used to implement the
true LRU stack and 1 bit is used to mark lines
belonging to the referenced list.

Aging do not require extra storage in the
cache. Random promotion shares the random
generator used in adaptive bypassing logic.

The adaptive bypassing logic requires 22 bits
per cache set. First, the competitor tag is used to
store the lower 16 tag bits of the tracked line.
The competitor way needs 4 bits in a 16-way
cache. There are two other 1-bit fields to record
the status of tracking. Competitor valid bit is
used to mark whether the competitor way is still
valid. We set this bit when start tracking a
bypassing and clear it when the competitor way
is selected as the victim or we have reached a
decision of whether the bypassing is effective or
ineffective. Virtual bypassing bit is the
indication of whether current tracked bypassing
is a result of real or virtual bypassing.

The storage cost of policy selector is mainly
consumed by ATD. In our configuration, the
ATD includes a sampled set to track for every
32 cache sets. Each sampled set has separated
tags and replacement states for each policy.
Similar as earlier proposals for dynamic policy
selection [4], we use 16-bit partial tags in ATD.
So each set has (16-bit tag + 1-bit valid) * 16
ways * 2 policies = 544 bits. To support two
variants of SLRU algorithms, we need storage
for replacement state in each set for both
policies. Depending on whether bypassing is
enabled, the cost of replacement state is 80 bits
(without adaptive bypassing) or 102 bits (with
adaptive bypassing) per set for each policy.

Besides hardware cost mentioned above,
there are several registers used for adaptation.
An 11 bit saturating counter is used for policy
selection. The bypassing probability is
determined by a 4-bit register per policy to
select a probability among 14 predetermined
choices: 0 and 1/2K (K ranges from 0 to 12).

Random numbers are needed for random
promotion and adaptive bypassing. In this paper,
we use a 32-bit Linear Feedback Shift Register
(LFSR) as the random number generator.

In our submission to the 1st JILP Cache
Replacement Championship (CRC1) [5], we
include three representative configurations of the
DSB algorithm as described in Table 1. All
configurations are composed with two variants
of SLRU algorithms and adaptive bypassing
support.

Table 1. DSB Configurations
CONFIG

1
CONFIG

2
CONFIG

3
Enable bypassing
for policy0

True True True

Enable bypassing
for policy1

False True True

Random promotion
probability for
policy0

0 0 0

Random promotion
probability for
policy1

0 0 16

Aging for policy0 0 0 0
Aging for policy1 1 1 1
Virtual bypassing
probability

16 8 8

Initial bypassing
probability

64 64 8

Second minimum
bypassing
probability
(minimum is 0)

1/256 1/4096 1/4096

The total hardware cost of CONFIG3 is
summarized in Table 2. CONFIG2 has the same
cost as CONFIG3. CONFIG1 has smaller cost
since bypassing is disabled in one policy so that
only one policy in ATD requires extra storage to
support bypassing. As shown in Table 2, the
total storage cost of our proposed algorithm is
less than CRC1’s budget for both single thread
and multi-thread tracks.

Table 2. Hardware Cost (bits)
Single-core
track

Multi-core track

of cache sets 1k 4k
bits for SLRU per
cache line

5 5

bits for bypassing
per cache set

22 22

Total cost of a set 5*16+22 = 102 5*16+22=102
bits per ATD set 544+102*2 =

748
544+102*2 =
748

of sets in ATD 32 128
Total cost of ATD 748*32=23.4k 748*128=93.5k
LFSR 32 32
Policy selection
counter

11 11

Bypassing probability
register

4*2 = 8 4*2 = 8

Total DSB Cost 102*1k+23.4k+
32+11+8 =
125.4K

102*4k+93.5k+
32+11+8 =
501.5k

7. Results

In order to cover a large variant of program
behaviors, we tuned our algorithm with 47
SPEC CPU2006 traces. These traces are picked
based on their sensitivity to different cache
replacement algorithms from 148 SPEC CPU
2006 traces with different inputs and simulation
points. Due to the limited space, we only report
results of 15 of these traces in this section. These
15 traces are selected based on the criteria that
more than 1% performance could be achieved
when increase LLC capacity from 1M to 2M
with true LRU replacement algorithm. These
traces are simulated for 100M instructions after
skipping 40B instructions.

Using the DSB configurations shown in
Table 1, LLC miss rates (measured in MPKI
reduction compared to true LRU) are shown in
Figure 1. Figure 2 gives performance speedups
of the selected traces with true LRU as the
baseline. As shown in the figures, the proposed
algorithm achieves significant higher
performance than true LRU. Among the 15
traces, only two traces (zeusmp and soplex)
show performance degradation and the
maximum degradation is relatively small (-2%).
The overall performance improvements are
7.7%, 8.6% and 8.4% respectively for
CONFIG1, CONFIG2 and CONFIG3.

Figure 1. MPKI reductions compared to true LRU

Figure 2. Speedups with true LRU as the baseline

Among the three enhancements proposed in
this paper, adaptive bypassing contributes to
majority of the performance gain over true LRU.
Without bypassing, performance gains of all
three configurations drop to about 2.7%. We
also observe significant performance
improvement from adaptive bypassing in single
policy algorithms. For example, a true LRU
algorithm with adaptive bypassing has 6.9%
performance gain.

8. References

[1] R. Karedla et al, “Caching Strategies to Improve
Disk System Performance”, Computer, vol. 27,
no. 3, pp. 38-46, Mar. 1994.

[2] M. Qureshi et al, “Adaptive Insertion Policies for
High Performance Caching”, ISCA 34, June 2007.

[3] M. Qureshi et al, “A case for MLP-aware cache
replacement”, In ISCA-33, 2006.

[4] R. Subramanian et al, “Adaptive Caches:
Effective Shaping of Cache Behavior to
Workloads”, in MICRO-39, 2006.

[5] 1st JILP Workshop on Computer Architecture
Competitions (JWAC-1): Cache Replacement
Championship, http://www.jilp.org/jwac-1/.

