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Abstract 

In this paper, we present a highly accurate predictor 
for indirect branches. The baseline is a tagged PPM-like 
(Prediction by Partial Matching) structure. The pattern 
to be matched includes global taken/not-taken and path 
history of both conditional and indirect branches. Rather 
than the conventional way of using the longest matches 
for prediction, we propose simple yet effective ways to 
adaptively select from matches with both short and long 
histories. We also designed an auxiliary predictor to 
exploit the correlation between the addresses of 
producer loads and the targets of consumer indirect 
branches.   

1. Introduction 

Besides conditional branches, indirect branches with 
multiple targets present a challenge for processor 
performance, especially when the targets are dependent 
on long-latency computation or memory accesses. 
Mispredictions of such indirect branches result in 
significant performance loss as well as energy wasted on 
executing instructions along wrong paths. In this paper, 
we propose a predictor to achieve high prediction 
accuracy for indirect branches.  

1.1. Related work 

Previous studies have shown that history information 
of control flow carries strong correlation to the targets of 
indirect branches. To capture such correlation, target 
caches [1] were proposed, in which the targets of an 
indirect branch with different history are maintained 
separately. Cascaded predictors [2] were proposed later 
on to combine multiple target caches with different 
history lengths. The Prediction by Partial Matching 
(PPM) algorithm provides a more generic model to 
exploit control-flow history information. PPM-based 
predictors [5] contain multiple Markov predictors with 
each capturing a different history length and the one with 
the longest match will be used to make the final 
prediction. The ITTAGE predictor [7] is an efficient way 
to implement the PPM algorithm with very long 
histories. Another way to exploit branch history 
information for indirect branches is to view each target 

of an indirect branch as a virtual branch [6]. This way, a 
conditional branch predictor can be (re)used to predict 
which virtual branch is taken and the associated target 
will be the prediction of the indirect branch.  

Our proposed predictor leverages previous work 
based on the PPM algorithm, the ITTAGE predictor in 
particular, for indirect branches. Our key idea is that 
rather than always using the Markov model with the 
longest match to make a prediction, we adaptively select 
the Markov models with proper history lengths. Similar 
observations that the longest matches may not be the best 
choice have been made in our previous work [3] on 
conditional branch prediction. 

Another novelty of our work is that we found that 
there exists very strong correlation between the producer 
load addresses and the consumer branch targets, similar 
to address-branch correlation explored for conditional 
branches [4]. We exploit such correlation at the address 
generation (AGEN) stage of a load instruction to make 
early correction of mispredicted indirect branches.  

1.2. Outline 

In section 2, we present the design of our proposed 
predictors and discuss its implementation issues. Section 
3 reports the detailed information of the storage cost of 
our proposed design. Section 4 briefly analyzes the 
experimental results. Section 5 concludes the paper. 

2. Design 

2.1. A Main Predictor at the Fetch Stage 

The baseline of our design is the ITTAGE predictor. 
It has multiple tagged tables with each capturing a 
specific history length. In our design, we use the same 
multiple-table structure. The first table (T1) uses the 
shortest history to generate its indices and tags while the 
last table (Tn) uses the longest history for its tag and 
index functions. Our key improvement over the ITTAGE 
predictor is that rather than using the cascaded design to 
select the table providing the longest match, we 
adaptively choose which table to be used for the final 
target prediction. In addition, we choose not to include a 
base predictor, which is to be indexed with the program 
counter (PC) without any history information, due to its 
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limited usage and relatively high storage cost. The 
overall predictor structure is shown in Figure 1a. 

As shown in Figure 1a, in all the tables except T1, 
each entry has 4 fields, tag, u (usefulness for 
replacement), target and alt. We design two ways to 
choose a table to provide the final prediction when there 
is more than one table having tag matches. The first is 
through the alt field. If this one-bit field is clear, it means 
that the target from the current entry is preferred for 
prediction. If the field is set, it means that a table with 
shorter history is to be used to make the final prediction. 
Such logic is implemented using the multiplexers, which 
are controlled with the alt fields, as shown in Figure 1a. 
As T1 is the one with shortest history, there is no need 
for the alt field. Initially, the alt fields in all the tables are 
set to false, which is functionally equivalent to selecting 
the longest match. During the update phase, if it is found 

that the table with the longest match fails to make the 
correct prediction while another table does, the alt field 
fields will be set for those entries with longer history 
lengths. The tag match signals shown in Figure 1a and 
Figure 1b are used to ensure that the tables without a tag 
match will not be used for final prediction. 

Our second way to select the proper table to provide 
the prediction is to use another multiplexer controlled by 
a separate structure, called a hard-to-predict branch table 
(HBT). The HBT is a cache-like set- associative structure 
and each entry contains a tag, a misprediction counter 
(mc), and a history length (hlen) field, as shown in 
Figure 1c. The mc field is used for replacement so that 
only those indirect branches with high misprediction 
rates are kept in the table. The HBT is updated based on 
the prediction made using the longest match rather than 
the actual prediction depending on the alt fields. Since 
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the branches in HBT are mispredicted using the longest 
match, we increase the hlen field, whose value, x, is then 
used to select the table with the xth longest histories. For 
example, if the hlen of an indirect branch is 2 and tables 
T2, T4, and T5 have tag matches and their corresponding 
alt fields are false, we will not select the longest match 
(i.e., T5) or the second longest match (T4). Instead, the 
table T2 is selected as a result of the hlen field being 2.  

Our proposed predictor is accessed at the instruction 
fetch stage to make a prediction and it is updated at the 
retire stage of an indirect branch. Due to the different 
program state at the two stages, the predictor uses two 
copies of global branch and path history information, one 
for prediction and the other for update.  

2.2. An Auxiliary Predictor at the AGEN Stage 

Our proposed predictor described in Section 2.1 
predicts targets at the fetch stage of an indirect branch. 
To reduce the misprediction penalty, we leverage the 
execution results of the instructions, upon which an 
indirect branch is dependent.  

From our code analysis, we found that many hard-to-
predict indirect branches are dependent upon load values. 
Since the loaded value will be immediately used by the 
dependent indirect branches, such execution results are 
available too late to be useful to reduce misprediction 
penalty. Therefore, we examine the correlation between 
the producer load addresses and the consumer branch 
targets, similar to the address-branch correlation 
observed for conditional branches [4]. Figure 2 shows 
such an example from one benchmark.  

 
Figure 2. A code example for address-target 
correlation. 

From Figure 2, we can see that the producer load 
accesses two primary addresses and either address 
contains a different branch target. As long as the data 
structure (e.g., a virtual function table) at these addresses 
is not frequently updated, the addresses of the producer 
loads are sufficient to determine the targets of their 
consumer indirect branches. We refer to such correlation 
as address-target correlation (ATC). 

In our design, we capture ATC in a small cache-like 
set associative structure, called address-target table 
(ATT) as shown in Figure 3. Each entry in ATT contains 
a tag and multiple pairs of hashed addresses and the 
corresponding targets. 

ATT is accessed at the address generation (AGEN) 
stage of a load instruction if it has a dependent indirect 
branch. The PC of the consumer indirect branch is used 
for tag match to see whether an entry in ATT has been 

allocated for it. If so, the hashed address of the producer 
load will be used to compare with multiple address-target 
pairs in the entry to find a matching pair to provide the 
prediction for the consumer branch. If the prediction 
differs from the one made at the fetch stage of the 
indirect branch, an early misprediction recovery is 
initiated to reduce the misprediction penalty. ATT is 
updated at the execution stage of an indirect branch. 
Only if it is mispredicted at the fetch stage, we search for 
its producer load address and then update ATT with the 
actual branch target. The least-recently-used (LRU) 
replacement policy is used to select a victim in ATT. 
Random replacement is used if there are more address-
target pairs than what each entry in ATT can maintain. 

 
Figure 3. An auxiliary predictor to exploit ATC. 

3. Cost of Storage 

In our simulator, we adopted the multiple table 
structure from the L-TAGE predictor [8]. We have a 
total of 11 tables with the structure described in Section 
2. The overall storage cost is presented in Table 1. 

4. Experimental Results 

Our proposed predictors are implemented in the 
distributed framework of CBP-3. The performance 
improvements, measured with reduction in misprediction 
penalties per 1K instructions across all the benchmarks, 
of our proposed designs over the baseline ITTAGE 
predictor are shown in Figure 4.  

 
Figure 4. The performance improvement of our 
proposed design over the baseline ITTAGE predictor. 

From Figure 4, we can see that by adding the 1-bit alt 
field in each entry of the ITTAGE prediction tables, the 
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performance is improved by 7.6% (labeled ‘Alt field 
only’). In comparison, if we only use HBT to select the 
proper table instead of the longest matches, the 
performance is improved by 5.8% (labeled ‘HBT only’). 
The combination of both mechanisms results in an 
improvement of 12.3% (‘Alt field and HBT). Early 
misprediction recovery using ATT provides a 3.4% 
improvement (‘ATT only’). This relatively limited 
performance enhancement is due to the fact that the 
latency between the AGEN stage of a producer load and 
the EXE stage of its consumer indirect branch is often a 
small portion of the misprediction penalty, which starts 
from the fetch stage of the indirect branch. This suggests 
that for higher performance gains we need to explore 
address-target correlation beyond the immediate 
producer-consumer pairs. Nevertheless, ATT provides a 
highly cost-effective way to improve performance. When 
all these schemes utilized together, the performance is 
improved by 15.6% using a large ATT (specification 
shown in Table 1). For an ATT with much lower cost, an 
8-entry ATT with each entry containing 4 address-target 
pairs, the overall performance improvement is 14.8%.   

5. Conclusions 

In this paper, we present our design for a highly 
accurate indirect branch predictor. The key insight 
includes (a) although control flow history carries 
correlation to targets, the strength of correlation may 
either increase or decrease for different indirect branches 
when we increase the history length; and (b) there exists 
strong correlation between producer load addresses and 
consumer branch targets. Our proposed design includes a 
main predictor to exploit correlation in history and a 
simple auxiliary predictor to exploit correlation in load 
source operands.  Our results show that our design 
reduces the misprediction penalty significantly. 
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Table 1. The storage cost the proposed design 

 
 

Component Storage Cost 
Table 1 2048 entries, each entry has a 7-bit tag, 2-bit u 

field, 32-bit target address. Total 
2048x(7+2+32) = 83968 bits 

Table 2 1024 entries, each entry has a 7-bit tag, 2-bit u 
field, 1-bit alt field, 32-bit target address. Total: 
43008 bits 

Table 3 4096 entries, each entry has a 8-bit tag, 2-bit u 
field, 1-bit alt field, 32-bit target address. 
Total:176128 bits 

Table 4 2048 entries, each entry has a 8-bit tag, 2-bit u 
field, 1-bit alt field, 32-bit target address. 
Total:88064 bits 

Table 5 512 entries, each entry has a 9-bit tag, 2-bit u 
field, 1-bit alt field, 32-bit target address. 
Total:22528 bits 

Table 6 512 entries, each entry has a 10-bit tag, 2-bit u 
field, 1-bit alt field, 32-bit target address. 
Total:23040 bits 

Table 7 512 entries, each entry has an 11-bit tag, 2-bit u 
field, 1-bit alt field, 32-bit target address. 
Total:23552 bits 

Table 8 512 entries, each entry has a 12-bit tag, 2-bit u 
field, 1-bit alt field, 32-bit target address. 
Total:24064 bits 

Table 9 512 entries, each entry has a 12-bit tag, 2-bit u 
field, 1-bit alt field, 32-bit target address. 
Total:24064 bits 

Table 10 64 entries, each entry has a 13-bit tag, 2-bit u 
field, 1-bit alt field, 32-bit target address. 
Total:3072 bits 

Table 11 64 entries, each entry has a 14-bit tag, 2-bit u 
field, 1-bit alt field, 32-bit target address. 
Total:3136 bits 

Table 12 64 entries, each entry has a 15-bit tag, 2-bit u 
field, 1-bit alt field, 32-bit target address. 
Total:3200 bits 

HBT 32 entries, each entry has a 32-bit tag, 2-bit u 
field, 4-bit hlen field Total:1216 bits 

History  Global history: 640x2 = 1280 bits 
ATT 26 entries, each entry has a 32-bit tag, a 5-bit 

LRU field, 10*10 bits for storing addresses and 
32*10 bits for targets. Total = 11882 bits  

Extra 55 bits (path history and few counters) 
Overall 532257 bits (64.97kB) 


