
Journal of Instruction Level Parallelism 1 (1999) 1-24 Submitted 5/99; published 10/99

Load Latency Tolerance In Dynamically Scheduled Processors

Srikanth T. Srinivasan SRI@CS.DUKE.EDU

Alvin R. Lebeck ALVY@CS.DUKE.EDU

Department of Computer Science
Duke University
Durham, NC 27708, USA

Abstract
This paper provides a quantitative evaluation of load latency tolerance in a dynamically

scheduled processor. To determine the latency tolerance of each memory load operation,
our simulations use flexible load completion policies instead of a fixed memory hierarchy
that dictates the latency. Although our policies delay load completion as long as possible,
they produce performance (instructions committed per cycle (IPC)) comparable to a pro-
cessor with an ideal memory system where all loads complete in one cycle. Our simulations
reveal that to produce IPC values within 12% of a processor with an ideal memory system,
between 1% and 71% of loads need to be satisfied within a single cycle and that up to 74%
can be satisfied in as many as 32 cycles, depending on the benchmark and processor con-
figuration. Load latency tolerance is largely determined by whether a mispredicted branch
is in the load’s data dependence graph and the depth of the dependence graph. Our results
show that up to 36% of all loads miss in the level one cache yet have latency demands lower
than second level cache access times. We also show that a similar percentage of loads hit
in the level one cache even though they possess enough latency tolerance to be satisfied by
lower levels of the memory hierarchy.

1. Introduction

Many of today’s microprocessors use dynamic scheduling [24,26] to maximize the num-
ber of instructions issued per cycle. By buffering instructions that are waiting for their oper-
ands and executing other independent instructions out of order, the processor is able to
tolerate some long latency operations—including cache misses—with almost no overall per-
formance degradation. To find enough independent instructions, most processors employ
sophisticated branch prediction mechanisms [11, 29] and allow speculative execution [19,
12], committing results only when the true outcome of a branch is known.

However, limitations due to finite resources, data dependencies and imperfect branch
prediction, render the processor unable to tolerate the latencies of some long latency opera-
tions. These operations are likely to degrade processor performance and hence arecritical.
Memory and I/O operations are the only potentially long latency operations whose latency is
not fixed. In this paper, we focus only on memory operations. Their latency can be altered by
controlling which level in the memory hierarchy holds the requested data. Long latency
stores are less of a problem because they do not have other instructions dependent on them,
whereas long latency loads can aggravate all three of the above limitations and can reduce
performance considerably. In this paper, we concentrate on load instructions.

Even though it is possible for long latency loads to degrade performance, not all of them
are equally critical. Figure 1 shows an example program dependence graph with two loads.
ld1 has many instructions that are data-dependent on it. These dependent instructions cannot



SRINIVASAN & L EBECK

2

begin execution until ld1 completes, and hence can decrease processor utilization. Also,
these instructions occupy buffer entries while waiting for their operands to become available.
If ld1 has a long latency, the processor could run out of buffer space. Furthermore, ld1 has a
branch instruction (br) in its dependence chain. If the branch is incorrectly predicted, then all
the work done by the processor executing along the mispredicted path could end up being
useless. ld1 should complete quickly to sustain high processor performance. In this scenario,
ld1 is said to havelow latency tolerance. On the other hand, ld2 has only one instruction
dependent on it. Even if it takes a long time to complete, the processor might be able to tol-
erate ld2’s latency by executing other independent instructions. In this case, we say that ld2
has ahigh latency tolerance.

The first contribution of this paper is to present a quantitative evaluation of load latency
tolerance in a dynamically scheduled processor. Using SimpleScalar [3] we compute individ-
ual load instruction latency tolerance by forcing their completion such that the number of
instructions committed per cycle (IPC) is comparable to a processor with an ideal memory
system that satisfies all requests in a single cycle. We evaluate a variety of polices to force
load completion in an effort to balance high IPC values with long load latencies. We find that
using mispredicted branches and the depth of a load’s dependence graph to determine when
loads should complete, produces IPC values within 12% of a processor with an ideal memory
system, while yielding noticeable latency tolerance.

Our simulations, on an 8 issue processor that can have up to 256 instructions in flight,
show that between 20% and 68% of the loads in our benchmarks need to complete in one
cycle and that 67% to 97% must complete in 8 cycles. Reducing the issue width to 4, reduces
the number of one cycle loads to between 1% and 45% and the number of 8 cycle loads to
7% to 89%. These results show that many loads could be satisfied with latencies comparable
to typical second-level cache hit times.

The second contribution of this paper is an evaluation of the match between the latencies
incurred in a traditional memory hierarchy and an application’s inherent latency demands.

Predicted Taken

P
re

di
ct

ed
N

ot
 T

ak
en

High Latency
Tolerance Load

Low Latency
Tolerance Load

Data Flow

Control Flow

Figure 1: Dependence Graph

ld 1 ld 2

br



LOAD LATENCY TOLERANCE IN DYNAMICALLY SCHEDULED PROCESSORS

3

We find that between 2% and 36% of loads requiring latency below 8 cycles miss in the first
level cache, depending on the cache size and application. Furthermore, our results reveal that
between 2% and 36% of loads that hit in the first level cache have enough latency tolerance
that they could be satisfied by lower levels of the memory hierarchy.

The remainder of this paper is organized as follows. Section 2. provides background
information and related work. Section 3. describes our technique for measuring the available
load latency tolerance. Our experimental methodology is presented in Section 4., and
Section 5. presents our results. Section 6. concludes this paper.

2. Background and Related Work

Superscalar processors maximize serial program performance by issuing multiple
instructions per cycle. Each cycle the processor attempts to issue up toissue-widthinstruc-
tions. One of the most important aspects of these systems is identifying independent instruc-
tions that can execute in parallel.

2.1 Scheduling, Prediction, and Speculation

In order to identify and exploit instruction level parallelism, most of today’s processors
employ dynamic scheduling, branch prediction, and speculative execution. Dynamic sched-
uling is an all hardware technique for identifying and issuing multiple independent instruc-
tions in a single cycle. The hardware looks ahead by fetching instructions into a buffer—
called anissue window—from which it selects instructions to issue to the functional units.
Instructions are issued only when all their operands are available, and independent instruc-
tions can execute out-of-order. Results of instructions executed out-of-order are committed
to the architectural register file in program order.

The issue window is filled with instructions from several basic blocks by predicting the
direction of conditional branches [5, 6, 13, 17, 20]. Furthermore, the instructions from the
predicted path are speculatively executed, under the assumption that branches on the path are
correctly predicted. These instructions can not update the architectural state of the processor
until the true outcomes of branches are determined. While waiting for branch computation,
these instructions occupy valuable buffer space potentially reducing the issue rate.

The above techniques are very effective for well-behaved programs with short-latency
operations. However, long latency operations, such as load cache misses, can reduce their
effectiveness for the following reasons:
1. Data Dependencies: If one or more operands of instructioni are produced by a previous

instruction j, then i is dependent onj, and i can begin execution only afterj has completed.
Clearly, instructioni can not be issued in the same cycle asj. While looking ahead, if most of
the newly dispatched instructions are dependent on earlier issued instructions waiting to com-
plete, even a dynamically scheduled processor will be unable to identify ready instructions to
execute, and the processor utilization will go down.

2. Finite Resources: The number of instructions the processor can look ahead to identify inde-
pendent instructions is limited by the number of available entries in the issue window. Depen-
dent instructions waiting for the result of a load and independent instructions waiting to commit
their results occupy entries. For long latency operations, the window could become full and
stall the processor.



SRINIVASAN & L EBECK

4

3. Branch Misprediction : When the predicted outcome of a branch is incorrect, the work per-
formed by the processor while executing along the incorrect path is useless.1 If computation of
the true branch outcome is delayed because of a cache miss, program completion could be
delayed many cycles because of the time lost due to misprediction detection and correction.
The remainder of this paper examines load latency tolerance in the context of the above

potential limitations.

2.2 Related Work

Previous studies that examined latency tolerance in decoupled architectures [8], analyzed
the effects of increasing memory latency for systems both with and without caches. In the
systems without caches, this produces a uniform increase in latency for all memory accesses.
This type of analysis can provide some insight into the latency tolerance of entire programs.
However, it is an all or nothing approach where every load has the same cost, and is suitable
only for specific memory system designs. Similarly, increasing the memory latency in cache
based systems does not accurately determine individual load latency tolerance, and the
results may be highly dependent on the cache organization. The latency tolerance of refer-
ences that hit in the cache is not accounted for, even though it may be quite large. We evalu-
ate the latency tolerance of individual load instructions without being tied down to a specific
memory system.

Graph based analyses have been used [2, 9, 15, 21, 25, 28] to study the amount of paral-
lelism available in programs. They work on a static/dynamic execution trace under idealistic
assumptions such as unconstrained resources, single cycle operational latencies for func-
tional units, perfect branch prediction and alias analysis. They use the dependence informa-
tion prior to an instruction to find the optimal schedule for a program. In contrast, we use
information about instruction dependencies that follow a load as well as about processor uti-
lization, to determine a load’s latency tolerance. Also, we conduct our evaluation on-line on
a realistic processor with constrained resources.

3. Computing Load Latency Tolerance

This section presents the policies we use to determine the latency tolerance of load
instructions. Our primary goal is to quantify the amount of latency tolerance in dynamically
scheduled processors. We also want to determine if there is variation among individual load
latency tolerance. That is, do some loads require fast servicing while others can be satisfied
in longer amounts of time without degrading performance? Finally, we want to evaluate the
match between a load’s computed latency tolerance and the latency it incurs in a conven-
tional cache memory hierarchy.

Developing a formal and rigorous definition of load latency tolerance is a complex task.
Instead, we use an operational definition of load latency tolerance. Our goal is to determine
how long a load can be outstanding without causing degradation in performance. Hence, we
do not complete a load as long as the processor is able to do useful work by looking ahead
and executing independent instructions. In particular, we want our computed latencies to
reflect a program execution that achieves IPC close to that of a processor with an ideal mem-
ory system, where all references complete in one cycle.

We compute the latency tolerance of a load by counting the number of cycles that elapse

1. Some of the results obtained during mis-speculative execution could prefetch useful instruction [16] and data
[22] that will be used later.



LOAD LATENCY TOLERANCE IN DYNAMICALLY SCHEDULED PROCESSORS

5

between the time the load is issued and the time it completes. A load is issued to the memory
system when its effective address is available, and it completes when the referenced data is
available for use by dependent instructions. In a traditional memory system, a load’s latency
depends primarily on which level in the memory hierarchy satisfies the request.

Our methodology is targeted at determining the latency tolerance of individual load
instructions. We rely on the ability to force completion of loads at arbitrary times to ensure
the processor is able to continue issuing instructions. Note this approach evaluates latency
tolerance in the context of a processor with constrained resources. Extending this study
beyond the limits of real hardware may provide interesting insights, but is beyond the scope
of this paper.

In our scheme, computing load latency is decomposed into the following four steps,
which we elaborate on in the remainder of this section:

1. Determining that one or more loads should complete,
2. Determining when the load(s) should complete,
3. Determining which specific load(s) should complete, and
4. Determining how many loads should complete.

3.1 Detecting that Loads Should Complete

Our goal is to allow loads to remain outstanding as long as they are not adversely affect-
ing performance. Therefore, to determine if any load(s) should be forced to complete we
must first determine if the processor performance is degrading. Recall that the performance
of dynamically scheduled processors can degrade because it is unable to execute independent
instructions due to limited buffer space, data dependencies, or it executes useless instructions
due to incorrect branch prediction. Therefore, we force loads to complete if their results
ensure the processor executes useful instructions (instructions on the correct path) or enable
the processor to sustain execution rates close to those achievable with a processor with an
ideal memory system, where all memory accesses complete in one cycle.

3.1.1 Branch-based Load Completion

Most modern processors predict the outcome of branches and speculatively execute
instructions on the predicted path. On a misprediction, all the work done by the processor in
speculative mode is useless. Delaying completion of a load on which a branch instruction is
dependent can increase the number of mis-speculated instructions executed and therefore
degrade performance. Hence, loads on which branches are dependent need to be given prior-
ity for early completion. Moreover, it is only mispredicted branches that cause the processor
to execute useless instructions. Therefore, it is sufficient to force a load to complete as soon
as a mispredicted branch attaches itself to the load’s dependency graph.

3.1.2 Performance-based Load Completion

Using branch prediction information to force completion of certain loads ensures that
loads do not cause the processor to execute useless instructions. However, that alone is not
enough. Arbitrarily delaying completion of the rest of the loads will aggravate the data
dependencies problem and the finite resources problem mentioned in the previous section.
This could prevent the processor from sustaining a reasonable level of performance.

To decide if loads should complete because of processor performance, we can monitor
one of two standard processor performance metrics: instruction issue rate or functional unit



SRINIVASAN & L EBECK

6

utilization. When the processor performance drops, we complete loads freeing up dependent
instructions as well as buffer space. In order to attain high IPCs we do not delay load com-
pletion until the processor actually comes to a stand still. Rather, we complete loads as soon
as the number of instructions issued or the number of computational units that are busy drops
below a tunable threshold.

Loads can also be forced to complete when there is a system call. However, for our
benchmarks there are very few system calls, therefore we do not discuss this case further in
this paper.

3.2 Determining Which Loads to Complete

Once it is determined that some load(s) must complete, we need to decide which specific
load to complete. In the case of mispredicted branches, clearly the load on which the branch
is dependent must be completed to decrease the execution of useless instructions. In contrast,
we have complete freedom to choose any load for completion when the issue rate or func-
tional unit utilization decreases. We investigate two policies: fifo and dependence graph
depth. The fifo policy simply forces the longest outstanding load to complete. The second
policy tracks the depth of a load’s dependence graph in cycles. The load with the largest
value is chosen for completion, since delaying it can occupy resources for an extensive
period of time.

3.3 Determining When Should Loads Complete

Having established which loads to complete, the next step is to determine when (i.e., in
which cycle) they must complete. To minimize execution of useless instructions due to
mispredicted branches, we must complete the appropriate load such that the entire depen-
dence chain between the load and the branch completes execution before the branch. This
requires the load to complete many cycles before we actually detect the mispredicted branch.
Section 4. describes how our simulations accomplish this. If the load is forced to complete
because of issue rate or functional unit utilization, we could naively complete it in the same
cycle that we detected the degradation in performance. However, this may not provide
enough time for the pipeline to fill up with ready instructions, and we may want the load to
complete earlier. Therefore, we use a tunable threshold for loadprecompletiontime to study
the effect of pipeline fill-up time on load latency tolerance.

3.4 Determining How Many Loads to Complete

Finally, in order to obtain an instruction issue rate or functional unit utilization above the
set threshold, we may need to complete more than one load in a given cycle. An important
parameter in this scenario is the limit on the number of loads that may complete. We study
this by limiting the number of loads that can complete in a single cycle to one, two, or four.

4. Experimental Methodology

To perform our evaluation we modified SimpleScalar [3], which models a dynamically
scheduled processor using a Register Update Unit (RUU) and a Load/Store Queue (LSQ)
[23]. The processor pipeline stages are:

Fetch: Fetch instructions from the program instruction stream.

Dispatch: Decode instructions, allocate RUU, LSQ entries.



LOAD LATENCY TOLERANCE IN DYNAMICALLY SCHEDULED PROCESSORS

7

Issue/Execute: Execute ready instructions if the required functional units are available.

Writeback : Supply the results of the operation to dependent instructions.

Commit: Commit results to the register file in program order, free RUU and LSQ entries.

Our baseline processor is an 8-issue machine with 8 integer adders, 4 integer multiply/
divide units, 8 floating point adders, 4 floating point multiply/divide units, and 8 cache ports.
We assume 256 RUU entries and 128 LSQ entries, a 2-level (2,2) branch predictor with a
total of 8192 entries, and that all stores complete in a single cycle. We use a dynamic mem-
ory disambiguation scheme that prevents loads from issuing when any previous store’s
address is not known, or when the data to be written by a previous store to the same address
is not ready. For the sake of simplicity, we ignore advanced memory disambiguation tech-
niques such as store sets [4], as well as load value or address prediction[10].

When necessary we assume a base two level cache configuration using a 32KB direct-
mapped L1, with 32 byte blocks and 8 ports. The L2 is 1MB direct-mapped with 64 byte
blocks, a single port and 8 cycles to satisfy an L1 miss. Both caches support up to 16 out-
standing misses, are fetch-on-write writeback, and have a 24 entry write-back buffer with a
high watermark of 12 [18]. Contention is modeled in all parts of the memory system.

Many of the load completion policies outlined in the previous section decoupledetecting
that a load must complete fromdetermining whenthe load should complete. Therefore, it is
possible for our scheme to determine that a load should have completed even before we
detect that it should complete. Recall the scenario where we detect that a load should com-
plete when a branch is dispatched and attaches itself to the dependence graph of the load.
Assume this detection occurs at cyclet and there ared cycles worth of instructions in the
dependence chain from the load to the branch. To minimize execution of useless instructions,
we determine that the load should complete at cycle (t-d), d cycles before we even establish
the load should complete.

To support this type of analysis, we added rollback capabilities to our simulator. This
allows us to look ahead to compute load completion time, rollback the processor, and then
restart execution using the predetermined load latency. The replayed execution may itself
incur rollbacks. This technique ensures the processor instruction schedule is determined by
the computed latency values. Supporting rollback requires logging all processor state at the
end of each simulated cycle. We limit the maximum number of cycles a load can be outstand-
ing to 32 and therefore a single load can cause the processor to rollback a maximum of 32
cycles.

Simulating a detailed out-of-order processor takes an enormous amount of time, and the
rollback capabilities we added only increase simulation time. Therefore, we also modified
SimpleScalar to support sampling. Our sampling technique alternates between a detailed out-
of-order simulator and a faster functional simulator that also maintains the contents of the
memory hierarchy.

Finally, to evaluate the effectiveness of traditional memory hierarchies at capturing
latency tolerance, we simulate a two-level memory hierarchy, as described above, in the
same execution as the latency tolerance analysis. This enables comparison between the com-
puted latency tolerance and where in the conventional memory hierarchy the request is satis-
fied. The load timing is dictated by the computed latency tolerance, and we simply track the
contents of the memory hierarchy. Because of the different processor schedule, there may be
some inaccuracies on the contents of the caches compared to an execution with load latency



SRINIVASAN & L EBECK

8

dictated by the conventional caches. However, we believe our approach is sufficient for this
study.

The following section presents our analysis using a subset of the SPEC95 benchmarks:
compress , gcc , li , vortex , hydro2d , swim , tomcatv , and wave as well as two
other benchmarks:meteor and otter . The benchmarks are all compiled using the ver-
sion of gcc provided with SimpleScalar and with optimization -O2. We run each benchmark
operating on itsreferencedata set until 10 billion instructions commit using 1% sampling.
This sampling ratio produces IPC values within 5% of complete simulations.

5. Experimental Results

This section presents our simulation results. We begin by examining the performance of
our benchmarks for different memory systems. This is followed by analysis of the effects of
branch prediction on latency tolerance. We then analyze the effects of varying how to detect
that loads should complete, how to select loads to complete, how to compute the time that
loads should complete, and how many loads are completed. We finish by examining various
processor configurations and investigating the match between the latencies incurred in con-
ventional multi-level memory hierarchies and the program’s computed latency tolerance.

5.1 Fixed Latency Memory Systems

One approach to obtain information on the amount of latency tolerance in a system is to
evaluate its performance for various memory system delays. We performed this experiment
by examining memory systems ranging from simple fixed cost memory accesses with no
contention to detailed memory hierarchies with contention accurately modeled at all levels.
The fixed cost memory systems assume all loads take the same amount of time; we examined
1, 8, and 32 cycle memory accesses. The detailed two-level memory hierarchies assume the
base 1MB second level cache, but vary the first-level configuration and the second-level miss
penalty. Specifically, we simulated a direct-mapped and two-way set-associative 32KB L1
cache with a 32 cycle memory latency (memlat32-{dm,2way}32k) and a direct-mapped
32KB L1 with a 64 cycle memory latency (memlat64-dm32k).

Figure 2 shows the performance of our benchmarks in terms of committed instructions
per cycle (IPC) for the above memory system configurations. We make several observations
from these results. First, for four of the non-floating-point (non-fp) benchmarks (gcc , li ,
vortex, and meteor ) the traditional memory systems achieve IPC values close to the
ideal memory system. This is not surprising, given the low miss ratios of these benchmarks,
2%, 1.4%, 1.5%, and 2.8% forgcc , li , vortex , andmeteor respectively, for a direct-
mapped 32KB L1 cache. The other benchmarks exhibit L1 miss ratios over 4%, thus increas-
ing the discrepancy in performance compared to the ideal memory system. We note that
increased associativity has little effect on overall IPC (excepttomcatv ), and that increasing
the L2 miss penalty (memlat64-dm32k) dramatically reduces the performance of two floating
point benchmarks (hydro2d , swim ), while all other benchmarks exhibit a small reduction
in IPC.

Another observation from the data in Figure 2 is that the performance of all benchmarks
decreases as we increase the latency for all memory accesses (ideal, fixed 8 cycles, fixed 32
cycles). The non-fp programs are especially sensitive to the increases in fixed cost memory
delays, and their IPC values drop below the traditional memory system when all memory
accesses take 8 cycles. In contrast, the floating point codes show less sensitivity to a fixed
cost delay of 8 cycles. Further increases in memory latency continue to decrease the IPC for



LOAD LATENCY TOLERANCE IN DYNAMICALLY SCHEDULED PROCESSORS

9

all programs. However, we point out the results ofswim that show only moderate reduction
in IPC even when all memory accesses take 32 cycles. This performance is dramatically
higher than the detailed two-level memory hierarchy mainly because of contention within the
memory hierarchy (e.g., L1 to L2 cache bus, L2 to memory bus).

The above analysis of fixed cost memory accesses provides some insight into latency tol-
erance. However, it is an all or nothing approach where every load has the same cost, and is
suitable only for specific memory system designs. The uniform cost model doesn’t exist in
multi-level memory hierarchies where some loads can be satisfied faster than others. There-
fore, as described in Section 3., our methodology is targeted at measuring the latency toler-
ance of individual load instructions. The remainder of this section presents our results.

5.2 Detecting that Loads Must Complete

This section investigates the policies for determining when loads must complete in order
to sustain performance comparable to that of a processor with an ideal memory system. We
begin by examining how branch prediction affects load latency tolerance. This is followed by
analysis of instruction issue rate and functional unit utilization as metrics for determining
load completion.

5.2.1 Branch Prediction and Load Latency Tolerance

We compare perfect branch prediction to our base two-level predictor using various poli-
cies for determining that loads should complete. For the two-level branch predictor, the first
policy always forces loads to complete if any branch attaches itself to the load’s dependence
chain (2-lev, all). The next policy is similar, except it forces a load to complete only if the
branch is mispredicted (2-lev, mispred).2 Finally, for both the two-level and perfect branch
predictor we evaluate a policy that does not use any branch information to force completion

2. This is possible to simulate because in SimpleScalar we can determine very early in the simulation cycle if a
branch is mispredicted.

Figure 2: Memory System Configuration and IPC

compress gcc li
vorte

x

hydro2d
swim

tomcatv
wave

meteor
otte

r
0

1

2

3

4

5

6

IPC

ideal (1 cycle)
memlat32-dm32k
memlat32-2way32k
memlat64-dm32k
fixed (8 cycles)
fixed (32 cycles)



SRINIVASAN & L EBECK

10

of loads (2-lev, none and perfect, none). In all of these simulations we make the following
assumptions, loads not forced to complete by a branch are completed according to an instruc-
tion issue threshold of four instructions per cycle, up to four loads can complete per cycle,
which load to complete is determined by the dependence graph depth, and we assume a pre-
completion time of two cycles. We evaluate these parameters later in this section. For com-
parison, we also simulate the ideal memory system for both the two-level predictor (2-lev
ideal) and perfect prediction (perfect, ideal).

Throughout this section we present our results in two parts: IPC and latency tolerance.
IPC results are presented like those in Figure 2. We present latency tolerance in terms of the
fraction of loads that must complete in a specific number of cycles. Loads that must com-
plete in a small number of cycles, do not exhibit latency tolerance and loads that can take
many cycles to complete do exhibit tolerance. Loads are forced to complete according to the
appropriate policy, or if they’ve been outstanding for 32 cycles.

Figure 3 shows the effects of branch prediction on IPC, while Figure 4 shows the corre-
sponding latency tolerance values. From Figure 3, we see that the 2-level predictor policies
that exploit branch information to force load completion(2-lev, all and 2-lev, mispred), meet
our goal of IPC close to a processor with an ideal memory system. Furthermore, we see that
using only mispredicted branches produces similar IPC values as forcing loads to complete
for all branches, and that ignoring branch information entirely dramatically reduces the non-
fp programs’ IPC values. We also see the expected result that perfect branch prediction dra-
matically increases performance for the non-fp codes. The two-level predictor achieves only
88% accuracy forcompress , 81% for gcc , 86% for li , 89% for vortex, 83% for
meteor, and 89% for otter . The floating point codes exhibit somewhat higher prediction
rates (hydro2d 99%,swim 99%,tomcatv 92%,wave 90%). More sophisticated branch
predictors may produce higher accuracies, hence increased IPC rates.

For the non-fp benchmarkscompress , gcc , li , meteor , andotter , between 20%
and 26% of the loads are completed based on mispredicted branch information, 7% forvor-
tex and less than 3% for the floating point benchmarks. With load completion based on

Figure 3: Effects of Branch Prediction on IPC
compress gcc li

vorte
x

hydro2d
swim

tomcatv
wave

meteor
otte

r
0

1

2

3

4

5

6

7

IPC

2-lev, ideal

2-lev, all

2-lev, mispred

2-lev, none

perfect, none

perfect, ideal



LOAD LATENCY TOLERANCE IN DYNAMICALLY SCHEDULED PROCESSORS

11

mispredicted branches enabled, we see a considerable reduction in the average dispatch-
issue delay for branches (time for the operands of the branch to become available) for the
integer benchmarks. Also, the number of speculative instructions executed drops by up to
28% for the non-fp benchmarks. The effect on the floating point benchmarks is considerably
less.

From Figure 4 we see that loads do exhibit variation in completion delays, and there is
significant variation among benchmarks. Between 10% and 74% of loads need to complete in
one cycle, while 50% to 99% of the loads need to complete within eight cycles. Furthermore,
the floating point programs exhibit very little variation in load latency for the various
branch-based load completion schemes. In contrast, the non-fp programs are sensitive to
these factors. In particular, differentiating mispredicted branches from accurately predicted
branches produces noticeable improvements in load latency tolerance without significant
changes in IPC. Ignoring branches altogether yields high latency tolerance, but the IPC val-
ues are too low. The final observation from these results is that improvements in branch pre-
diction will increase the amount of latency tolerance for the integer programs, as indicated
by the increases seen for perfect branch prediction.

5.2.2 Processor Performance and Load Latency Tolerance

The second source of information for determining if loads should complete is processor
performance. Here, we examine the instruction issue rate and functional unit utilization as
metrics for determining that loads should complete. We assume that mispredicted branches
force completion of loads, precompletion time is 2 cycles, and up to four loads can complete

8 16 24 32
Load latency tolerance (cycles)

20

60

100

20

60

100

20

60

100
C

u
m

u
la

ti
v
e

 %
 o

f 
lo

a
d

s
 c

o
m

p
le

te
d

20

60

100

8 16 24 32

20

60

100

8 16 24 32

20

60

100

20

60

100

20

60

100

20

60

100
2−lev, all
2−lev, mispred
2−lev, none
perfect, none

8 16 24 32

20

60

100

meteor

vortex

li

gcc

compress hydro2d

swim

tomcatv

wave

otter

Figure 4: Effects of Branch Prediction on Load Latency Tolerance



SRINIVASAN & L EBECK

12

per cycle.
Figure 5 shows the effect of issue rate thresholds of 1 (nis1), 2 (nis2) and 4 (nis4), and a

functional unit utilization threshold of 4 (fub4) on instructions per cycle. Whenever the pro-

compress gcc li
vorte

x

hydro2d
swim

tomcatv
wave

meteor
otte

r
0

1

2

3

4

5

6

IPC

ideal (1 cycle)
fub4
nis4
nis2
nis1
memlat32-dm32k
fixed (8 cycles)

Figure 5: Effects of Performance-based Completion on IPC

8 16 24 32
Load latency tolerance (cycles)

20

60

100

20

60

100

20

60

100

C
u

m
u

la
ti
v
e

 %
 o

f 
lo

a
d

s
 c

o
m

p
le

te
d

fub4
nis4
nis2
nis1

20

60

100

8 16 24 32

20

60

100

8 16 24 32

20

60

100

20

60

100

20

60

100

20

60

100

8 16 24 32

20

60

100

meteor

vortex

li

gcc

compress hydro2d

swim

tomcatv

wave

otter

Figure 6: Effects of Performance-based Completion on Load Latency Tolerance



LOAD LATENCY TOLERANCE IN DYNAMICALLY SCHEDULED PROCESSORS

13

cessor issue rate (or number of busy functional units in the case of fub4) drops below this
threshold, we force loads to complete. For comparison, we include the IPC values for the tra-
ditional memory system (memlat32-dm32k) and the fixed 8 cycle memory system. From this
data we see that the metric functional unit utilization produces slightly higher IPC values
than instruction issue rate (fub4 vs. nis4). The simulations also reveal that decreasing the
instruction issue rate threshold produces a commensurate decrease in IPC. We note that for
all but four of the non-fp benchmarks, IPC values are still higher than the traditional two-
level memory system even when the threshold is one instruction per cycle. As mentioned
previously, the four non-fp programs have low L1 miss rates, and they achieve near ideal per-
formance. We also note thatswim , using functional unit utilization to force load completion,
actually achieves higher IPC than a processor with an ideal memory system because of the
difference in the dynamic instruction issue schedule.

Figure 6 shows the corresponding latency tolerance for the various issue rate thresholds.
The first observation is that although functional unit utilization (fub4) has a slight perfor-
mance advantage, it produces much lower latency tolerance than the instruction issue rate
metric (nis4). We also observe that decreasing the issue rate threshold can dramatically
increase the latency tolerance. This matches our intuition that if the processor is consuming
data at a lower rate, it can take longer for the data to arrive. However, the cost of this
increased latency tolerance is reduction in IPC. A four instruction per cycle threshold pro-
duces IPC values within 9% of that of a processor with an ideal memory system, whereas a
threshold of one instruction per cycle produces IPC values up to 58% lower than ideal.
Therefore, we do not consider thresholds of one or two further in this paper. Similarly, we
omit further discussion of functional unit utilization since the decreased latency tolerance
more than offsets the marginal increase in IPC.

5.3 Determining Which Loads to Complete

Now that we’ve determined that either mispredicted branches attaching to a load’s
dependence graph or the instruction issue rate falling below four should force load comple-

compress gcc li
vorte

x

hydro2d
swim

tomcatv
wave

meteor
otte

r
0

1

2

3

4

5

6

IPC

ideal (1 cycle)
fifo
dg
memlat32-dm32k
fixed (8 cycles)

Figure 7: Effects of Load Selection on IPC



SRINIVASAN & L EBECK

14

tion, we focus on identifying which outstanding load to complete. Completing the load at the
head of the LSQ (fifo) can prevent processor stalls due to the RUU/LSQ being full and thus
help alleviate the finite resource problem. On the other hand, completing the load with the
maximum depth (in cycles) of dependent instructions (dg) will help tackle the data depen-
dency problem by freeing up the most dependent instructions and thereby keep the processor
maximally utilized.

Figure 7 shows the effect of the load selection policy on instructions per cycle and
Figure 8 shows the corresponding latency tolerance values. The figures show that both the
fifo and dg load selection policies produce almost identical IPC numbers. However, complet-
ing loads based on the dependence graph depth increases the latency tolerance of loads for
the floating point benchmarks. Therefore, dg is a better choice since it meets our goals of
maximizing the time a load can remain outstanding while maintaining high performance.
These results provide further evidence of the variation in load latency tolerance, and indicate
that completing loads in program order is not necessarily the “best” schedule for exploiting
load latency tolerance.

5.4 Determining When to Complete Loads

Having decided to complete the loads with the maximum depth of dependent instruc-
tions, we proceed to investigate when such loads should be completed. The load completion
time controls the amount of time available for the pipeline to fill up with ready instructions.
We study the effect of completing loads the same cycle as detecting performance degradation

8 16 24 32
Load latency tolerance (cycles)

20

60

100

20

60

100

20

60

100

C
u

m
u

la
ti
v
e

 %
 o

f 
lo

a
d

s
 c

o
m

p
le

te
d

fifo
dg

20

60

100

8 16 24 32

20

60

100

8 16 24 32

20

60

100

20

60

100

20

60

100

20

60

100

8 16 24 32

20

60

100

vortex

li

gcc

compress hydro2d

swim

tomcatv

wave

ottermeteor

vortex

gcc

compress

swim

wave

Figure 8: Effects of Load Selection on Load Latency Tolerance



LOAD LATENCY TOLERANCE IN DYNAMICALLY SCHEDULED PROCESSORS

15

(pipeline fill-up time of zero - fut0), one cycle earlier (fut1) and two cycles earlier (fut2) on
load latency tolerance. Note this only applies to loads not forced to complete by a mispre-
dicted branch. From Figure 9 we see that IPC decreases as the fill up time increases for the

compress gcc li
vorte

x

hydro2d
swim

tomcatv
wave

meteor
otte

r
0

1

2

3

4

5

6

IPC

ideal (1 cycle)
fut2
fut1
fut0
memlat32-dm32k
fixed (8 cycles)

Figure 9: Effects of Completion Time on IPC

8 16 24 32
Load latency tolerance (cycles)

20

60

100

20

60

100

20

60

100

C
u

m
u

la
ti
v
e

 %
 o

f 
lo

a
d

s
 c

o
m

p
le

te
d

fut2
fut1
fut0

20

60

100

8 16 24 32

20

60

100

8 16 24 32

20

60

100

20

60

100

20

60

100

20

60

100

8 16 24 32

20

60

100

meteor

vortex

li

gcc

compress hydro2d

swim

tomcatv

wave

ottermeteor

vortex

li

gcc

compress hydro2d

swim

tomcatv

wave

otter

Figure 10: Effects of Completion Time on Load Latency Tolerance



SRINIVASAN & L EBECK

16

floating point benchmarks and vortex. The other five benchmarks have a significant number
of loads completed due to mispredicted branches. Hence fill up time has less impact.Swim
shows the highest degradation in IPC, going down from within 1% of ideal for fut2 to within
8% of ideal for fut0. Looking at the corresponding latency tolerance graphs in Figure 10,
latency tolerance generally increases as we decrease the fill up time. These results match our
expectations, completing loads earlier obviously decreases their latency tolerance.Further-
more, the processor requires some recovery time as results propagate down the dependence
graph and a sufficient number of instructions become ready to execute. Using a pipeline fill-
up time of 2 cycles (fut2) produces the best combination of IPC and latency tolerance num-
bers.

5.5 Limiting the Number of Completed Loads

Finally, achieving IPCs close to that of a processor with an ideal memory system will
likely require completing more than one load per cycle. Keeping all other parameters fixed,
we examine limits of one (nl1), two (nl2) and four (nl4) on the number of loads that can com-
plete in a single cycle. Figure 11 shows the impact of these limits on IPC and Figure 12
shows the corresponding latency tolerance numbers. The overall trend we observe from this
data is that, as we increase the limit on the number of loads that can complete in a cycle from
1 to 4, IPC increases and the latency tolerance decreases. This is in line with our expecta-
tions, since a lower limit causes some loads to complete later than they should according to
our policies, which causes a decrease in IPC

5.6 Effects of Processor Microarchitecture

To evaluate the impact of various microarchitectural changes on our results, we evaluated
a configuration with 128 RUU entries and 64 LSQ entries, and a four issue processor for both
the 128/64 and 256/128 RUU/LSQ configurations. In the case of the four issue processor, we
used an issue rate threshold of three instructions per cycle and up to three loads can complete
in a single cycle. Figure 13 shows the effect of various processor configurations on IPC and

compress gcc li
vorte

x

hydro2d
swim

tomcatv
wave

meteor
otte

r
0

1

2

3

4

5

6

IPC

ideal (1 cycle)
nl4
nl2
nl1
memlat32-dm32k
fixed (8 cycles)

Figure 11: Effects of Number of Loads Completed on IPC



LOAD LATENCY TOLERANCE IN DYNAMICALLY SCHEDULED PROCESSORS

17

Figure 14 shows the corresponding latency tolerance numbers. The graphs are labeled
according to issue-width/RUU entries/LSQ entries.

The first observation from this data is that the issue width has a much larger impact on

8 16 24 32
Load latency tolerance (cycles)

20

60

100

20

60

100

20

60

100

C
u

m
u

la
ti
v
e

 %
 o

f 
lo

a
d

s
 c

o
m

p
le

te
d

nl4
nl2
nl1

20

60

100

8 16 24 32

20

60

100

8 16 24 32

20

60

100

20

60

100

20

60

100

20

60

100

8 16 24 32

20

60

100

meteor

vortex

li

gcc

compress hydro2d

swim

tomcatv

wave

otter

Figure 12: Effects of Number of Loads Completed on Load Latency Tolerance

compress gcc li
vorte

x

hydro2d
swim

tomcatv
wave

meteor
otte

r
0

1

2

3

4

5

6

IPC

4/128/64
4/256/128
8/128/64
8/256/128

Figure 13: Effects of Processor Microarchitecture (Issue-width/RUU-size/LSQ-size) on IPC



SRINIVASAN & L EBECK

18

IPC than buffer space does. We note that all the IPC values shown are within 12% of the cor-
responding processors with an ideal memory system. Also, we see that the IPC values are
mostly independent of the number of RUU/LSQ entries. However, the situation is very dif-
ferent with respect to the amount of latency tolerance. From Figure 14, we see that latency
tolerance increases when either the issue width decreases or the RUU/LSQ entries increases.
The floating point programs exhibit larger increases than the other programs. The most strik-
ing change is forswim with the 4/256/128 configuration, nearly all its memory references
can complete in the 32 cycle limit.

5.7 Load Latency Tolerance Variation

Thus far, we have presented an evaluation of our mechanism for quantifying load latency
tolerance. During our latency tolerance computations, the processor determines how long a
load can be outstanding without degrading performance. This is the target latency for the
load. We gathered a profile of the target latencies of loads over entire runs of programs. Such
information can be used to guide processor and/or memory system optimization, study the
spatial and temporal locality characteristics of load latency tolerance, etc.

A load can be identified by either:

1. the effective address (EA) that it accesses
2. its program counter (PC)

8 16 24 32
Load latency tolerance (cycles)

20

60

100

20

60

100

20

60

100

C
u

m
u

la
ti
v
e

 %
 o

f 
lo

a
d

s
 c

o
m

p
le

te
d

4/128/64
4/256/128
8/128/64
8/256/128

20

60

100

8 16 24 32

20

60

100

8 16 24 32

20

60

100

20

60

100

20

60

100

20

60

100

8 16 24 32

20

60

100

meteor

vortex

li

gcc

compress hydro2d

swim

tomcatv

wave

otter

Figure 14: Effects of Processor Microarchitecture on Load Latency Tolerance



LOAD LATENCY TOLERANCE IN DYNAMICALLY SCHEDULED PROCESSORS

19

Profile information based on effective addresses is important because caches are
accessed using effective addresses and this information can be used directly for any profile-
guided optimizations. On the other hand, many programs consist of loops. The latency toler-
ance of a load is partly determined by the structure of its dependence graph (particularly
branch dependencies), and since dependence graphs can be expected to look alike over dif-
ferent iterations of a loop, PC based statistics tend to repeat periodically. Hence, we obtain a
distribution of the target latencies for each effective address as well as each PC for the differ-
ent benchmarks.

While collecting effective address based profiles, we aggregate groups of adjacent cache
blocks into larger blocks called macroblocks, similar to Johnson and Hwu [7], such that the
target latencies of cache blocks within each macroblock are similar. We use a macroblock
size of 256 bytes. Considering an L2 cache access latency of 8 cycles, it is reasonable to
think of all loads with a target latency of less than 8 cycles as being in the critical zone and
the rest of the loads as being in the non-critical zone. Figure 15a shows the percentage of ref-
erences that lie in the critical zone for each macroblock for the benchmarkswim . Figure 15b
shows the same information for the PCs ofgcc . The benchmarks were chosen because they
exhibit the most interesting characteristics in the respective categories.

The horizontal line shown in Figure 15 are set at 60% and can be used to specify the
latency tolerance threshold for classifying loads as critical. For example, if at least 60% of
references to a PC over the entire run of the program lie in the critical zone, then we could
classify the load corresponding to the PC as a critical load. Such a classification can be done
using macroblocks as well. Thus, loads above the latency tolerance threshold in the figures
are non-critical while those below, are critical. Forswim , loads to about 40% of all macrob-
locks referenced, lie in the critical zone. This constitutes about 39% of all references. Simi-
larly for gcc , about 24% of all PCs which correspond to 83% of total references are in the
critical zone. These results show that there is a lot of variation in the latency tolerance
among load instructions.

0

20

40

60

80

100

0

20

40

60

80

100

Figure 15: Target Latency Distributions

a) swim - EA distribution b) gcc - PC distribution

P
er

ce
nt

ag
e 

of
 R

ef
er

en
ce

s 
w

ith
ta

rg
et

 la
te

nc
ie

s 
< 

8 
cy

cl
es

P
er

ce
nt

ag
e 

of
 R

ef
er

en
ce

s 
w

ith
ta

rg
et

 la
te

nc
ie

s 
< 

8 
cy

cl
es



SRINIVASAN & L EBECK

20

5.8 Traditional Memory Hierarchies

We now evaluate how good traditional memory systems are in capturing this variation.
To determine this, we track which level in a traditional memory hierarchy satisfies each load
and increment a counter for the corresponding computed latency tolerance. This produces a
histogram for each level in the memory hierarchy, and allows us to evaluate the memory hier-
archy’s effectiveness with varying access times for each level. For example, if the L2 access
time is 8 cycles, then to avoid performance degradation, loads with computed latency toler-
ance less than 8 cycles should be satisfied by the L1 cache. Similarly, loads with computed
latency greater than or equal to 8 cycles, but less than main memory access time, could be
satisfied by the L2 cache. Clearly, we can perform this computation for arbitrary access
times. Furthermore, we can track the discrepancy between where a load should be satisfied
and where it is actually satisfied in the memory hierarchy.

We performed this analysis on 8KB, 16KB, and 32KB, direct-mapped and two-way set-
associative L1 caches with 32-byte blocks, using the base L2 cache configuration (1MB, 64-
byte blocks). For brevity, we report results only for the direct-mapped caches and an L2
access time of 8 cycles on the 8-issue processor with 256 RUU entries and 128 LSQ entries.
Table 1 shows the effectiveness of the traditional two-level memory hierarchies at capturing
latency tolerance. The top row for each benchmark in the table indicates the percentage of
loads satisfied by a particular level in the memory hierarchy with computed latency tolerance
less than 8 cycles. Similarly, the bottom row for each benchmark corresponds to loads with
computed latency greater than or equal to 8 cycles. The levels of the memory hierarchy are
the load/store queue (LSQ), L1 cache, L2 cache, and main memory.

We focus our discussion on the L1 and L2 caches. In particular, the number of low
latency loads (< 8 cycles) not satisfied by the L1 cache and the number of high latency loads
(>= 8 cycles) satisfied by the L1 indicates the mismatch between the applications latency
demands and the latency incurred in the memory hierarchy. From these results we see that
some benchmarks exhibit significant discrepancy between their latency demands and the
latency that’s incurred in a real memory hierarchy. Consider the 16KB cache forswim , 17%
of loads require low latency but are satisfied by the L2 cache, whereas 28% of loads have
enough latency tolerance and are L1 cache hits. Ideally, those references should be swapped,
with the L1 cache satisfying the low latency loads and the L2 satisfying the high latency
loads.

Compress is another striking example, with 15% to 21% of its loads requiring low
latency but missing in the L1 cache. However, we note thatcompress has very few high
latency loads for this processor configuration. In contrast, forswim 3% to 34% of loads
require low latency yet miss in the L1 cache, whereas 18% to 36% of loads are high latency
and hit in the L1. Finally, for the floating point benchmarks a noticeable fraction (1%-6%) of
loads require low latency but are satisfied by main memory. As the disparity between proces-
sor cycle time and main memory access time increase, even this small fraction of references
can dramatically reduce overall performance

The mismatch between an application’s latency demands and the actual latency is depen-
dent on the performance of the real memory hierarchy. In general, we see that reducing the
L1 cache size increases the discrepancy. The floating point benchmarks show dramatic
increases as the cache size is reduced.Swim andtomcatv go from 3% and 2% low latency
L1 load misses in the 32KB cache to 34% and 28%, respectively, in the 8KB cache. Although
not shown, reducing the boundary from 8 cycles to 6 cycles can increase the number of low



LOAD LATENCY TOLERANCE IN DYNAMICALLY SCHEDULED PROCESSORS

21

latency load misses in the L1 cache. Also, our results (not shown) indicate that increasing the
L1 associativity has very little effect on the match between the application’s latency demands
and the memory hierarchy’s performance, when compared to the direct-mapped caches.

6. Conclusion

This paper explores latency tolerance in dynamically scheduled processors. Our two pri-
mary contributions are a quantitative evaluation of applications’ inherent latency tolerance in
dynamically scheduled processors, and analysis of how well a conventional memory hierar-

Table 1: Effectiveness of Traditional Memory System at Capturing Latency Tolerance

Bench
mark

Lat
enc
y

Where the Load is Satisfied in a Traditional Memory System

LSQ L1 Cache L2 Cache Memory

8K 16K 32K 8K 16K 32K 8K 16K 32K 8K 16K 32K

compress
< 8 13% 13% 13% 63% 66% 69% 21% 18% 15% 0% 0% 0%

>= 8 0% 0% 0% 2% 2% 2% 1% 1% 0% 0% 0% 0%

gcc
< 8 8% 8% 8% 73% 75% 77% 5% 3% 2% 0% 0% 0%

>= 8 1% 1% 1% 11% 11% 11% 1% 0% 0% 0% 0% 0%

li
< 8 9% 9% 9% 78% 79% 80% 3% 2% 2% 0% 0% 0%

>= 8 1% 1% 1% 8% 8% 8% 0% 0% 0% 0% 0% 0%

vortex
< 8 17% 17% 17% 52% 53% 55% 4% 3% 2% 0% 0% 0%

>= 8 5% 5% 5% 21% 21% 21% 1% 1% 0% 0% 0% 0%

hydro2d
< 8 22% 22% 22% 62% 63% 64% 7% 6% 4% 3% 3% 3%

>= 8 0% 0% 0% 5% 5% 5% 1% 1% 0% 0% 0% 0%

swim
< 8 5% 5% 5% 21% 38% 52% 34% 17% 3% 2% 3% 3%

>= 8 0% 0% 0% 18% 28% 36% 18% 9% 1% 0% 0% 0%

tomcatv
< 8 11% 11% 11% 21% 38% 46% 28% 11% 2% 6% 6% 6%

>= 8 0% 0% 0% 12% 23% 28% 18% 9% 3% 3% 3% 3%

wave
< 8 26% 26% 26% 37% 44% 49% 18% 11% 6% 1% 1% 1%

>= 8 3% 3% 3% 7% 12% 13% 8% 3% 1% 0% 0% 0%

meteor
< 8 8% 8% 8% 71$ 73% 74% 6% 3% 2% 1% 1% 1%

>= 8 2% 2% 2% 12% 12% 12% 1% 1% 0% 0% 0% 0%

otter
< 8 4% 4% 4% 70% 73% 78% 21% 18% 14% 1% 1% 1%

>= 8 1% 1% 1% 2% 2% 3% 1% 1% 0% 0% 0% 0%



SRINIVASAN & L EBECK

22

chy meets the application’s latency demands. We compute latency tolerance by determining
the number of cycles a load could take to complete without adversely affecting performance
compared to a processor with an ideal memory system, where all loads complete in one
cycle.

Our simulations show that load latency is a function of the number and type of dependent
instructions. In particular, mispredicted branches have a significant impact on computed
latency tolerance for the integer benchmarks. We also observe that most of the programs we
studied do exhibit some latency tolerance, and still obtain IPC values comparable to a pro-
cessor with an ideal memory system. Our results show that between 1% and 71% of loads
must complete in one cycle, and between 7% and 98% must complete within 8 cycles,
depending on processor configuration.

We show that for some benchmarks, a significant number of loads could be satisfied in
latencies on the order of second level cache access times, while others must be satisfied by
the first level cache. Unfortunately, this discrepancy in latency tolerance is ignored by con-
ventional memory hierarchies that always fetch data into the primary cache. We plan to
investigate methods for utilizing latency tolerance information in memory hierarchy manage-
ment. Prefetching [14] is clearly one avenue for exploiting this information. Alternatively,
we could place data in the memory hierarchy according to the corresponding load’s latency
tolerance and bypass higher levels of the memory hierarchy [1,7,27], or prioritize requests in
a system that supports multiple outstanding misses

7. Acknowledgments

We would like to thank Chia-Lin Yang, Mithuna Thottethodi, Robert Wagner, and partic-
ularly, the anonymous referees for their extremely helpful feedback on earlier versions of
this paper. This work supported in part by NSF CAREER Award MIP-97-02547, DARPA
Grant DABT63-98-1-0001, NSF Grants CDA-97-2637, CDA-95-12356, and EIA-99-72879,
Duke University, and an equipment donation through Intel Corporation’s Technology for
Education 2000 Program. The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of the U.S. Government.

8. References

[1] Santosh G. Abraham, Rabin A. Sugumar, Daniel Windheiser, B. R. Rau, and Rajiv
Gupta. Predictability of Load/Store Instruction Latencies. pages 139–152, December
1993.

[2] Todd M. Austin and Gurindar S. Sohi. Dynamic Dependency Analysis of Ordinary Pro-
grams. InProceedings of the 19th Annual Symposium on Computer Architecture, pages
342–351, May 1992.

[3] Doug C. Burger, Todd M. Austin, and Steve Bennett. Evaluating Future Microprocessors-
the SimpleScalar Tool Set. Technical Report 1308, Computer Sciences Department, Uni-
versity of Wisconsin–Madison, July 1996.

[4] George Z. Chrysos and Joel S. Emer. Memory Dependence Prediction using Store Sets.
In Proceedings of the 25th Annual International Symposium on Computer Architecture,
pages 142–153, June 1998.



LOAD LATENCY TOLERANCE IN DYNAMICALLY SCHEDULED PROCESSORS

23

[5] S. Dutta and M. Franklin. Block-Level Prediction for Wide-Issue Superscalar Processors.
In Proceedings of 1st International Conference on Algorithms and Architectures for Par-
allel Processing, volume 1, pages 143–152, 1995.

[6] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A. Bringmann, R. G.
Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm, , and D. M. Lavery. "The
superblock: An effective structure for VLIW and superscalar compilation. Technical
report, University of Illinois, Urbana, IL Center for Reliable and High-Performance
Computing, February 1992.

[7] Teresa L. Johnson and Wen Mei W. Hwu. Run-time Adaptive Cache Hierarchy Manage-
ment via Reference Analysis. InProceedings of the 24th Annual International Sympo-
sium on Computer Architecture, pages 315–326, June 1997.

[8] Lizyamma Kurian, Paul T. Hulina, and Lee D. Coraor. Memory Latency Effects in
Decoupled Architectures with a Single Data Memory Module. InProceedings of the 19th
Annual International Symposium on Computer Architecture, pages 236–245, 1992.

[9] Monica S. Lam and Robert P. Wilson. Limits of Control Flow on Parallelism. InProceed-
ings of the 19th Annual International Symposium on Computer Architecture, pages 46–
57, May 1992.

[10] Mikko H. Lipasti, Christopher B. Wilkerson, and John Paul Shen. Value locality and
load value prediction. InProceedings of the Seventh International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, pages 138 – 147,
December 1996.

[11] S. McFarling. "Combining branch predictors". Technical Report WRL Technical Note
TN -36, Digital Equipment Corporation, June 1993.

[12] Wen mei W. Hwu and Yale N. Patt. Checkpoint Repair for Out-of-Order Execution
Machines. InProceedings of the 14th Annual International Symposium on Computer
Architecture, pages 18–26, Pittsburgh, Pennsylvania, June 2–5, 1987. IEEE Computer
Society TCCA and ACM SIGARCH.Computer Architecture News, 15(2), June 1987.

[13] K. N. Menezes, S. W. Sathaye, and T. M. Conte. Path prediction for high issue-rate pro-
cessors. InProceedings of the 1997 International Conference on Parallel Architectures
and Compilation Techniques, pages 178–188, November 1997.

[14] Todd C. Mowry, Monica S. Lam, and Anoop Gupta. Design and Evaluation of a Com-
piler Algorithm for Prefetching. InProceedings of the Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS V),
pages 62–73, 1992.

[15] A. Nicolau and J. Fisher. Measuring the Parallelism Available for Very Long Instruction
Word Architectures.IEEE Trans. on Computers, C-33 (11):968–976, November 1984.

[16] Jim Pierce and Trevor Mudge. Wrong-Path Instruction Prefetching. InProceedings of
the 29th Annual International Symposium on Microarchitecture, pages 165–175, Paris,
France, December 2–4, 1996. IEEE Computer Society TC-MICRO and ACM SIGMI-
CRO.



SRINIVASAN & L EBECK

24

[17] Eric Rotenberg, Steve Bennett, and James E. Smith. Trace Cache: a Low Latency
Approach to High Bandwidth Instruction Fetching. InProceedings of the 29th Annual
International Symposium on Microarchitecture, pages 24–34, Dec 1996.

[18] Kevin Skadron and Douglas W. Clark. Design Issues and Tradeoffs for Write Buffers. In
Proceedings of the 3rd International Symposium on High Performance Computer Archi-
tecture (HPCA), pages 144–155, 1997.

[19] James E. Smith and Andrew R. Pleszkun. Implementation of Precise Interrupts in Pipe-
lined Processors. InProceedings of the 12th Annual International Symposium on Com-
puter Architecture, pages 36–44, June 17–19, 1985. IEEE Computer Society TCA and
ACM SIGARCH.Computer Architecture News, 13(3), June 1985.

[20] J.E. Smith. A Study of Branch Prediction Strategies. InProceeding of 8th Annual Sym-
posium on Computer Architecture, pages 135–148, May 1981.

[21] M. D. Smith, M. Johnson, and M. A. Horowitz. Limits on Multiple Instruction Issue. In
Proceedings of the Third International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS III), pages 290–302, May 1989.

[22] Avinash Sodani and Gurindar S. Sohi. Dynamic Instruction Reuse. InProceedings of
the 24th Annual International Symposium on Computer Architecture, pages 194–205,
June 1997.

[23] Gurindar Sohi. Instruction Issue Logic for High Performance, Interruptable, Multiple
Functional Unit, Pipelined Computers.IEEE Transactions on Computers, 39(3):349–
359, March 1990.

[24] James E. Thornton. Parallel Operation of the Control Data 6600. InProceedings of the
Fall Joint Computers Conference, volume 26, pages 33–40, 1964.

[25] G. S. Tjaden and M. J. Flynn. Detection and Parallel Execution of Parallel Instructions.
IEEE Transactions on Computers, C-19 (10):889–895, October 1970.

[26] R. M. Tomasulo. An Efficient Algorithm for Exploiting Multiple Arithmetic Units.IBM
Journal, pages 25–33, January 1967.

[27] Gary Tyson, Matthew Farrens, John Matthews, and Andrew R. Pleszkun. A Modified
Approach to Data Cache Management. InProceedings of the 28th Annual International
Symposium on Microarchitecture, pages 93–103, December 1995.

[28] David W. Wall. Limits of Instructional-Level Parallelism. InProceedings of the Fourth
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS IV), pages 176–188, April 1991.

[29] Tse-Yu Yeh and Yale N. Patt. Alternative Implementations of Two-Level Adaptive
Branch Prediction. InProceedings of the 19th Annual International Symposium on Com-
puter Architecture, pages 124–134, May 1992.


