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Abstract

How much do two profiles of the same program differ? When has a profile changed enough to
warrant reexamination of the profiled program? And how should two or more profiles be combined
to make a better hybrid profile? To answer these questions, we borrow concepts from information
theory that measure the differences between the distributions of random variables. Treating the dis-
tribution of execution frequencies in a profile like the distribution of a random variable lets us use
metrics of difference between distributions and induces a mathematically well-founded way to com-
bine distributions. For concreteness, we report results based on branch profiles, but our algorithms
apply to any frequency-based profiling method. Our metric agrees in character with prior metrics
while allowing us to adjust the relative importance of coverage and conflict issues. Our hybrid dis-
tributions do better than previous profile blending methods. 

1. Introduction

Many recent systems use profiles to guide optimization and translation towards a variety of goals.
These systems have been striking in their ability to instrument with extremely low performance
overhead (e.g., Compaq’s Continuous Profiling Infrastructure, Anderson et al., 1997), their inno-
vative application of profiling to binary translation (e.g., the FX!32 x86-to-Alpha translation sys-
tem, Hookway & Herdeg, 1997), and their exhibition of speedups in dynamic optimization (e.g.,
Hewlett-Packard’s Dynamo dynamic optimization project, Bala, Duesterwald, & Banerjia, 1999).
All of these recent systems blur the traditional barrier between static (compiler) and dynamic
(hardware) approaches. What used to be done once at compile time can now be done (and redone)
at run time. But to do so effectively, we need to be able to compare profiles, to determine when the
behavior of a program has changed significantly, and to combine multiple profiles to produce a
better hybrid profile. This work uses information theoretic ideas to attack these problems. 

Information theory deals with efficient representations of data streams and related issues like
coding, compression, and prediction. Information theory is a related field to computer science and
statistics, so it is not surprising that ideas from information theory are relevant to problems in pro-
filing. Some information theory has been used recently to analyze dynamic branch prediction
schemes (Chen, Coffey, & Mudge, 1996, and Federovsky, Feder, & Weiss, 1998). To our knowl-
edge, this is the first work that applies information theoretic concepts to profiling.

Profiles are statistics about the execution of a program; they are commonly execution frequen-
cies but they can also include data about system performance at a variety of levels. Our informa-
tion-theoretic approach applies to any frequency-based profiling method. For concreteness and
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simplicity of exposition, we constrain our discussion in this paper to branch profiles; much of the
relevant scholarly work also relates to branch profiling.

Our first two problems, comparing profiles and determining when program behavior has
changed, suggest that we need some sort of metric of the differences between profiles. Prior work
in this area includes the concepts of coverage, conflict, and a geometric measure introduced
recently by Kistler and Franz (1998). In their extensive cross-validation study of static branch pre-
diction, Fisher and Freudenberger discuss coverage, noting that some runs of a program execute
different parts of the program from other runs (Fisher & Freudenberger, 1992). They experimented
with a number of different metrics but did not find any one that satisfactorily explained their
results. Calder, Grunwald, and Srivastava later defined coverage as the percentage of branches
from a program run that were also executed during a profile training run (Calder, Grunwald, &
Srivastava, 1995). We adopt the latter definition of coverage for this paper, and we define both
static coverage and dynamic coverage. Static coverage is the number of branch instructions
touched in both the training and testing runs divided by the number of branch instructions touched
during the testing run. Dynamic coverage is similar, but it weighs each branch by its execution fre-
quency. The dynamic coverage is the sum of execution frequencies of instructions in the testing
run that were also touched during the training run divided by the total branch execution frequency
of the testing run. 

Conflict is a relative of coverage: it measures the percentage of branches that change majority
direction between the training and testing data sets. Similarly to coverage, we also define statically
and dynamically weighted forms of conflict. Coverage and conflict are related in the way that con-
trol-flow graph (CFG) node profiles and CFG edge profiles are related: both give frequencies for
points of the program, but conflict metrics and edge profiles also capture the exit bias of individual
branch instructions. For reference purposes, Table 1 summarizes the definitions of the various
kinds of coverage and conflict. We will return to Kistler and Franz’ metric later in the paper; it is
better to discuss it after we have introduced our own metric. 

Fisher and Freudenberger also examined our third problem, combining multiple profiles into a
hybrid profile. They investigated different ways of combining profiles that they called unscaled,
scaled, and polling. Unscaled combination simply adds the profile counts from different runs;
longer runs therefore carry more weight. Scaled combination divides each data point frequency by
the total frequency for that profile, then arithmetically averages the weights seen in different pro-
file runs. Polling gives each data set one vote no matter how large the program run. Fisher and
Freudenberger report that polling performs poorly, while scaled and unscaled combining both give
good results; they report scaled results because scaling seems intuitively better. 

So far, we have been rather vague about what we mean by a, “better,” method to build hybrid
profiles. Each designer has a set of goals, including but not limited to power, performance, cost,
and so forth; a better profile would help with respect to such goals. In addition, certain domain-

Static Coverage % of test instructions also touched during train

Dynamic Coverage % of executed instructions on test that were also executed during train

Static Conflict % of test branch instructions whose bias disagrees with the train bias

Dynamic Conflict % of executed branch instructions on test whose bias disagrees with the train bias

Table 1: Basic profile metrics. 
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specific knowledge may change which profiles are better compared to others. For example, one
might know that recent profiles are more accurate than older profiles for a particular application,
or one might know that longer profile runs correspond to more common uses of a program. Each
of these specific pieces of knowledge should be used to build a better-performing system if it is
available. Our approach addresses the case where one has collected a set of profiles but has no
additional external knowledge about what should or should not be valued. And we also believe
that our approach would still work for combining profiles in the presence of additional knowledge;
we would just need to bias some of the parameters to favor the more likely cases.

The next section introduces our metric, which is based on the information-theoretic concept of
relative entropy or Kullback-Liebler distance. Section 3 then gives an algorithm using geometric
averaging and relative entropy to blend a pair of profiles. We present empirical results in Section 4.
Lastly, we discuss the implications and usefulness of this work. 

2. Relative Entropy

Our approach treats a frequency profile as a probability distribution. This makes intuitive sense: a
profile says where a program is likely to spend its time, while a probability distribution says which
values a random variable is likely to assume. In effect, we treat the program counter as a random
variable (even though we know it is not—more about this later) then view the frequency profile as
a set of samples drawn from the program counter’s underlying probability distribution. The statis-
tical concept of a probability distribution is like the profiling ideal of program behavior. We can
never exactly know either, but we can approximate them with increasing accuracy as we see more
samples or more behavior. 

We translate from profile frequencies to probabilities in the obvious way: scale the frequencies
by the total frequency over the profile. This is just the first step of the scaled combination method.
More formally, let  denote the set of branch instructions in a program and consider the branch
trace of the program, which is a sequence of ordered pairs . An appearance of

 indicates that an execution of the program entered branch  and fell through, while 
indicates that the branch  was taken. Let  denote the number of times
ordered pair  was encountered in the trace. We call our translation the independent and iden-
tically distributed (i.i.d.) branch and decision model. In this model, we assume that the sequence
of ordered pairs is i.i.d.1 with probability

1. Independent and identically distributed is a term from introductory probability. “Identically distributed,” means that
each value is drawn from the same underlying probability distribution. “Independent,” means that the value observed for
one sample does not affect the value of other samples. 
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At the risk of illustrating the obvious, Table 2 lists some sample frequency profiles and their
translations into scaled probabilities under the i.i.d. branch and decision model. Each row of the
table shows values for one profile. Each column shows the frequencies or probabilities associated
with a single event in the profiled program; an event in an edge profile would be an ordered pair

. Note that prof1 covers all of the events, that prof2 and prof3 are very similar,
that prof5 covers the same events as prof2 and prof3 but with different emphasis, while prof4 over-
laps very little with prof2, prof3, and prof5. We will use these profiles to help explain this section
and the next section. 

Before we can discuss the relative entropy of two probability mass functions, we need to
define the entropy of a single random variable. Let  be a discrete random variable taking values
from an alphabet  with probability mass function . Entropy measures
the uncertainty of a random variable; it is a lower bound on the average length of the shortest
description of  (see Cover & Thomas, 1991, section 1.1). Said differently, entropy is the average
number of bits required per symbol to optimally encode a stream of symbols chosen from  using
the probability distribution . The entropy  of  is the expected value of ,
where  is drawn according to , i.e., 

Because of continuity arguments, we use the convention that . In encoding a stream
of values, we use more bits to represent the rarer symbols; the log of the inverse of the probability
of a symbol is the right number of bits to use to encode that symbol. To relate this definition of
entropy back to dynamic optimization and translation, the entropy of a profile distribution can be
seen as a measure of locality in program execution; a program that spends most of its time in a few
places (large  at few values of ) will have low entropy, while a program with poor locality

Profile event1 event2 event3 event4
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prof1 250 250 250 250

prof2 1500 500 20 0

prof3 300 150 10 0

prof4 0 0 400 450

prof5 400 500 600 0

Pr
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il
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s

prof1 0.25 0.25 0.25 0.25

prof2 0.74 0.25 0.01 0.00

prof3 0.65 0.33 0.02 0.00

prof4 0.00 0.00 0.47 0.53

prof5 0.27 0.33 0.40 0.00

Table 2: Sample profile frequencies and their translation into probabilities under the i.i.d branch and decision 
model.
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(small  at many values of ) will have high entropy. Dynamic optimization and translation
systems exploit the principle of locality, so we expect such systems to do better on programs
whose profiles have low entropy.

Table 3 shows the entropy of each sample profile and the components that each event contrib-
utes to the total. Each component is a term of the form , where  is just one of
the profiled events. Low-probability events contribute significant components, so large numbers of
low-probability events will raise the entropy of a profile. Profiles with high entropy tend to have
large numbers of events that are evenly balanced in probability. Profiles with low entropy concen-
trate their frequencies and probabilities in a small number of events. 

Entropy tells us something about the locality of a single profile run, but our goal remains to
compare two different profiles. The relative entropy or Kullback-Liebler distance of two probabil-
ity distributions on  is a measure of their distance. Relative entropy measures the inefficiency of
assuming that the distribution is  when it is actually . This is like the difference between opti-
mizing or translating for some assumed profile when the program run corresponds to a different
actual profile. If we are given two probability mass functions  and , then their relative
entropy  is defined by 

Similarly to before, we use the convention that  and ; in a
moment we will also adjust some of the profile values to eliminate the infinite terms. The descrip-
tion length interpretation of  is that  is a lower bound on the average
length of the shortest description of  when  is the true distribution of the random variable and

 is the distribution for which the description was designed (see Cover & Thomas, 1991, section
2.3). In other words,  is the average additional number of bits that are transmitted because
of the incorrectly assumed distribution. Relative entropy measures a mismatch between probabil-
ity mass functions that is like the mismatch between training and testing data sets in profile-based
optimization: we optimize with a training profile (assumed distribution), but realistic results are
measured with a different, testing profile (actual distribution). 

Entropy components

Profile event1 event2 event3 event4 Entropy

prof1 0.50 0.50 0.50 0.50 2.00

prof2 0.32 0.50 0.07 0.00 0.88

prof3 0.40 0.53 0.12 0.00 1.05

prof4 0.00 0.00 0.51 0.49 1.00

prof5 0.51 0.53 0.53 0.00 1.57

Table 3: Per-event components of entropy and total entropy for each sample profile.
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Relative entropy is always non-negative (see Cover & Thomas, 1991, section 2.6) and is zero
only when the two distributions are identical2. Although it does provide a sense of the closeness of
two distributions, relative entropy is not truly a distance metric because it is not symmetric and it
does not satisfy the triangle inequality. However, the asymmetry models a realistic aspect of pro-
files: one profile can be a good training set for the other without the reverse being true. 

Observe that the relative entropy

is infinite when there is a term of the form . Similarly to the continuity arguments
above, we modify any probability distribution  so that  for all  while we simultaneously
maintain the ratios among the remaining probability mass values in .  should be chosen smaller
than the inverse of the total execution frequency; otherwise the modified values can end up larger
than the scaled non-zero frequency events. The choice of  indicates how much we wish to penal-
ize a lack of coverage (smaller values of  will give larger metric values for points where the train-
ing set does not cover the testing set). For the experimental results in this paper, we used a value of

.
 is a more sophisticated metric than coverage and conflict, because  examines the

relative frequencies of nodes and edges in the assumed and actual profiles rather than summarizing
nodes by presence or absence and edge pairs by majority direction. We would expect that such
continuous metrics would be more sensitive than binary ones: e.g., the difference between branch
biases of 5% and 95% on different profiles is much larger than the differences between biases of
49% and 51%. 

Table 4 shows the relative entropies of pairs of our sample profiles. The data for each actual
data set appear in rows, while the assumed data sets appear in columns.3 The diagonal of the
matrix is always zero: a profile exactly matches itself. We see very high relative entropies when
the assumed profile does not cover the actual profile, e.g., no other profile is a good assumed data
set for prof1, while prof4 is a bad assumed data set for all other actual data sets. On the other hand,
prof2 and prof3 have low relative entropy because they are close in character. Prof5 covers the
same events as prof2 and prof3, but with different emphasis; this distinction is correctly reflected
by the slightly higher values for relative entropy when using prof5 rather than prof2 or prof3 for
either the assumed or the actual distributions. 

One aspect of  is unsatisfying: nothing relates the edges that exit a single control-flow
graph node to one another. I.e., the counts  and  are related by the logic of the program
in a way that  and  are not, but our metric does not capture this difference. We also

2. One aspect of the formula seems unintuitive: the logarithm allows us to have negative terms when .
While this is true for any particular value of , we never achieve a negative total because negative terms are offset by
positive terms where the actual distribution is larger than the assumed distribution. 
3. These are usually called testing data set (actual) and training data set (assumed). SPEC already uses these terms for
their three input data sets: “ref”, “train,” and “test.” So we use assumed and actual to avoid confusion.
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examined a couple of metrics that strove to capture this difference. Neither alternate metric seemed
very different in character from , so we omit them from this paper. 

Code for converting frequency counts into probability distributions and for computing the
Kullbach-Liebler distance between two distributions appears in Figure 1. 

Assumed prof1 prof2 prof3 prof4 prof5

Actual

prof1 0.00 25.19 24.85 48.33 24.12

prof2 1.12 0.00 0.03 97.80 0.94

prof3 0.95 0.03 0.00 96.47 0.74

prof4 1.00 54.90 54.36 0.00 52.38

prof5 0.43 1.88 1.35 58.66 0.00

Table 4: Relative entropies of the sample profiles.

Dedge

double *
Freq2Prob(int nevents, ulong *freqs)
{

ulong total = 0;
double *results = malloc(nevents * sizeof(double));

for(i = 0; i < nevents; i++)
total += freqs[i];

for(i = 0; i < nevents; i++)
results[i] = (double)freqs[i] / total;

return results;
}

double
KLDist(int nevents, double *actual, double *assumed)
{

double distance = 0.0;

for(i = 0; i < nevents; i++)
distance += actual[i] * log2(actual[i] / assumed[i]);

return distance;
}

Figure 1: Code for converting frequencies to probability distributions and for computing the Kullbach-Liebler dis-
tance between two probability distributions. Note that we have omitted checks for division by zero for the sake of
brevity; actual code substitutes epsilon ( ) as described in the paper.ε
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3. Combining Profiles

Our algorithm for combining two frequency profiles has a simple implementation and description,
but there is a more complex argument for why the algorithm produces useful results. We present
the algorithm first; those who are uninterested in the mathematical justification can skim the
remainder of this section.

3.1. Algorithm

To blend two profiles, we need to find a synthetic profile that is a compromise between the two.
Assume our two profiles have been translated into probability distributions using the i.i.d. branch
and decision model; call them  and . Then we will search values of the parametric probabil-
ity mass function , defined as

 is a geometric weighting of  and ;  gives  and  gives , while
 gives the geometric average of the two probability distributions.

Figure 2 illustrates how  relates to the other probability distributions. The triangle repre-
sents the probability simplex, the space of probability distributions over  (the simplex is typi-
cally drawn as a triangle because a space of  possible values for the random variable has only

 degrees of freedom—the last probability must ensure that the sum of probabilities is 1). 

P0 P1
Pλ

Pλ x( )
P0

1 λ– x( )P1
λ x( )

P0
1 λ– a( )P1

λ a( )
a Ψ∈
∑

--------------------------------------------------=

Pλ P0 P1 λ 0= P0 λ 1= P1
λ 1 2⁄=

Pλ

P0

P1

Pλ

Figure 2: The probability simplex, showing the original distributions  and , and the range of values of
the parameterized distribution . Distributions in the upper part of the simplex are closer to , while those
in the lower part of the simplex are closer to . (After Cover & Thomas, 1991, Figure 12.9).
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Pλ P0

P1

Ψ
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n 1– P0
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and  are points in this space. The space is divided into two parts: points that are closer to ,
and parts that are closer to . The line between the two spaces is analogous to the perpendicular
bisector in Euclidean geometry. The values of  trace out an arc from  to ; we will search
along this arc for our hybrid probability distribution.

Next, we use the relative entropy metric from Section 2 to choose the value of ; we look for
a value of  such that  is equidistant from both  and . We could do this directly, but there
is an easier way. To do this, we build a function  that computes 

then binary search the interval [0,1] for , the value that minimizes this function. Then  is
our synthesized profile distribution. 

Code for computing  and then the synthesized probability distribution  appears in Fig-
ure 3.

Table 5 tabulates part of the search space when our algorithm combines prof2 with prof5. The
first column depicts values of  in the interval ; the second through fifth columns show the
corresponding probabilities for each event and that value of , and the sixth column shows the
value of , which is minimized between  and . Note that the values for
event2 unintuitively exceed the original profile values in the range . This is due to
the combination of geometric blending and normalization that we perform. The numerator of our
formula for , the geometrically blended probabilities from the original profiles, produces terms
that sum to less than 1.0 unless , or , or . To normalize the probabilities,
we divide by the sum of all synthesized terms. This boosts the synthesized probabilities of events
that are relatively common to both profiles for some intermediate values of . This boosting
would never happen with arithmetic blending. The extra column in Table 5 lists the normalizing
coefficients that were used. Figure 4 graphs the columns of Table 5, depicting the relative event
probabilities in our synthesized profile distributions as we vary  from 0 to 1.
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Figure 4: Synthesized probabilities as  varies from 0 to 1.λ
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double
evaluate_c(double lambda, int nevents, double *p0, double *p1)
{

double total = 0.0;

for(i = 0; i < nevents; i++)
total += pow(p0[i], 1.0 - lambda) * pow(p1[i], lambda);

return total;
}

double
search_lambda(int nevents, double *p0, double *p1)
{

double lambdalo, lambdamid, lambdahi, distlo, distmid, disthi;

distlo = evaluate_c((lambdalo = 0.0), nevents, p0, p1);
disthi = evaluate_c((lambdahi = 1.0), nevents, p0, p1);
lambdamid = (lambdalo + lambdahi) / 2.0
distmid = evaluate_c(lambdamid, nevents, p0, p1);

while(fabs(distlo - disthi) > STOP_BIN_SEARCH){
if(distlo < disthi){

lambdahi = lambdamid;
disthi = distmid;

}else{
lambdalo = lambdamid;
distlo = distmid;

}
lambdamid = (lambdalo + lambdahi) / 2.0
distmid = evaluate_c(lambdamid, nevents, p0, p1);

}

return lambdamid;
}

double *
kl_blend(int nevents, double *p0, double *p1)
{

double lambdastar = search_lambda(nevents, p0, p1);
double norm = evaluate_c(lambdastar, nevents, p0, p1);
double *results = malloc(nevents * sizeof(double));

for(i = 0; i < nevents; i++)
results[i] = pow(p0[i], 1.0 - lambda) * pow(p1[i], lambda) / norm;

return results;
}

Figure 3: Code for evaluating the function , for binary searching for the minimum of  in the interval
[0,1], and for constructing the geometrically parameterized synthetic profile distribution. 

c λ( ) c λ( )
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Figure 5 charts the values of the relative entropies from the synthesized profile to the original
profiles; it captures the trade-off from favoring one profile to the other as we vary  from 0 to 1.

 is the point on the horizontal axis where the two distance curves cross: it exactly balances the
distance from the synthesized distribution  to each of the two original distributions. 

Our algorithm runs in time proportional to the number of profile events times the number of
bits of accuracy desired in ; in all of our experiments our computations were I/O-bound.

We describe how our algorithm performs for combining static branch profiles in Section 4.2;
now we continue with the formal explanation of how and why it works.

The justification for our algorithm reverses an argument from the theory of hypothesis testing.
In hypothesis testing, we have a number (or in our case just a pair) of hypotheses, one of which is
true. Based on some amount of evidence, we try to tell which of the hypotheses is the correct one;
hypothesis testing analyzes the probability of error and allows us to weigh the hypotheses based on
the evidence to minimize errors. The reversal comes from how we think about the evidence we
have seen so far. Instead of using the evidence we have seen so far to guess the correct hypothesis,

Values of 
Normalizing 
coefficient

event1 event2 event3 event4

0.00 = prof2 0.74 0.25 0.01 0.00 1.00 1.00

0.13 0.71 0.28 0.02 0.00 0.93 0.93

0.25 0.66 0.31 0.03 0.00 0.87 0.87

0.38 0.62 0.34 0.05 0.00 0.82 0.82

0.50 0.56 0.36 0.08 0.00 0.80 0.80

0.63 0.50 0.38 0.13 0.00 0.79 0.79

0.75 0.42 0.38 0.20 0.00 0.81 0.81

0.88 0.35 0.37 0.29 0.00 0.88 0.88

1.00 = prof5 0.27 0.33 0.40 0.00 1.00 1.00

Table 5: Part of the search space of synthetic profiles when combining prof2 and prof5. 
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Figure 5: Values of the relative entropies from the hybrid profile  to the original profiles prof2 and prof5.
The horizontal axis shows the values of . (After Cover & Thomas, 1991, Figure 12.10).

Pλ
λ

D Pλ prof2||( )

λ



SAVARI & YOUNG

12 

we will construct a set of evidence that is simultaneously close to both original profiles but hard to
use to choose which one is correct. We will start by introducing the usual terminology that
describes the hypothesis testing problem, then we will consider the sorts of evidence that make
decisions hard. 

3.2. Terminology for Hypothesis Testing

Suppose we are given independent and identically distributed random variables  that
have probability mass function . When we observe the values of these random variables we
see the sequence of specific values . These values are the pieces of evidence about

 that we might observe. We have two hypotheses  and  for the nature of . Either
 or , i.e.,  states that , the probability distribution, is , while 

states that the probability distribution is . Our choice for the solution is based on a decision
function  which returns the value zero if it chooses hypothesis  and otherwise
returns the value one. 

With the decision rule  there are two error probabilities:

In other words,  is the error probability that after seeing the first  samples,  incorrectly
picks , while  is the error probability of the reverse failure. We would like to minimize both
error probabilities, but there is a trade-off between them.4 

It is possible to show that the best decision rules are likelihood tests of the form

for some  (see Cover & Thomas, 1991, section 12.7). In other words, consider the ratio of
probabilities of seeing the empirical evidence so far under the two hypothesized probability distri-
butions. If this ratio exceeds the threshold value , choose ; otherwise choose . Choosing

 turns out to give us equal probabilities of error  and ; other values of  will favor
one kind of error over the other. This kind of decision rule makes intuitive sense: it tracks which of
the hypothesized probability distributions is closer to the empirical samples we have seen so far.

Let  be the empirical probability distribution corresponding to . In other
words,  is just the probability distribution constructed from the frequency of occurrences of

4. We can trivially minimize  or  by using the constant decision functions or , respectively, but
finding a decision function that makes a good trade-off between  and  requires more analysis. 
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-------------------------------- T and H1 otherwise>

T 0≥
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T 1= αn βn T

P
Xn x1 ... xn, ,( )

P
Xn
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different values in the series . Then we can further show that the likelihood test

is equivalent to

(see Cover & Thomas, 1991, Section 12.7, p. 307; the argument basically takes the logarithm of
the likelihood test inequality).

This concludes our definition of terms for the hypothesis testing problem. The next subsection
continues with how to find the empirical distribution that corresponds to our synthesized profile.

3.3. Boundary Evidence

Using the terminology from the last subsection, we can now state our goal more precisely: find an
empirical probability distribution, , that is close to both  and  while still making the
decision between them hard. Our metric tells us the distance from , the distribution we have
seen so far, to the two profiles,  and . There is a space of such empirical distributions 
(depicted in Figure 2), and we can use the distance metric to partition them into three pieces: distri-
butions that are closer to , those that are closer to , and those that are equidistant to both 
and . Our desired distribution will be in the equidistant set, and it must also be close to the orig-
inals.

In the Bayesian approach to hypothesis testing, we assign prior probabilities to the two
hypotheses, then we analyze the total error possible in the system. Call these a priori probabilities

, for each hypothesis . In other words, before we see any of the evidence from the
, there is a chance that hypothesis  is correct (of course, ). Using our defini-

tions, the a posteriori probability of error (the odds that we misidentify after having seen  sam-
ples) is

Next, define 
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As we increase the number of samples that we see, our likelihood of making an error using the
best decision rule decreases exponentially. Roughly speaking,  is the best rate of decay or base
of this exponential curve; it describes the rate at which errors decrease as we see more samples
using the best possible decision rule.  exists and is well-defined. The proof is a significant
information theoretic result; the result is known as the Chernoff Bound. Cover derives the Cher-
noff Bound in Section 12.9 (Cover & Thomas, 1991); explaining the details of the bound is unfor-
tunately beyond the scope of this work. 

We have carefully chosen our definitions to match the conditions of the Chernoff Bound; it
tells us that  turns out to be the best achievable error exponent; and further that

and

where 

i.e.,  is the value of  that minimizes the maximum of  and , the rela-
tive entropy distances from  to  and . Further, the function that  minimizes (which is
just  from Section 3.1) is convex in the range [0,1], so  exists and is unique. 

More slowly and working backwards, the third equation above tells us that  minimizes
, the same function we minimized in the algorithm of Figure 3. Then plugging the definition

of  into the second equation gives us . Lastly, the first equation tells us that
the point  is the point where the curves cross in Figure 5. 

The value of  above is exactly the  that we found using the algorithm of Section 3.1. So
the Chernoff bound tells us that we have indeed found the boundary piece of evidence that is
simultaneously close to both hypothetical distributions. When we use this to build a synthesized
profile distribution, we get the profile distribution that is equidistant from both training (assumed)
data sets while simultaneously also being as close as possible to both data sets. 
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4. Experimental Results

We collected profiles on a 533MHz Alpha 21164 clone with a 164LX motherboard, 2MB of board
cache, and 128MB of main memory. The Alpha runs Digital UNIX version 4.0D (revision 878);
we profiled using Atom version 2.47 and custom analysis files. We compiled the SPECint95
benchmarks using base optimization settings. Due to current limitations of our analysis code, we
collected statistics for only the last run of each training, testing, or reference input set. Table 6
summarizes the number of static and dynamic branches our profiles recorded on each profiling
run. We use static and dynamic in the same sense as in the definitions for our metrics: one static
branch instruction in the program text might be executed many times during a run; each of these
executions of the static branch is a dynamic branch. 

We collected three profiles for each benchmark, one for each of the reference, testing, and
training inputs. These are described by the file SPEC95/doc/RUN.txt, which is part of the SPEC95
distribution:

...“ref” is the input set for generating publishable numbers, “train” is used for gen-
erating feedback directed optimization (if used) and “test” is a short input for help-
ing verify that the benchmark was compiled correctly.

When reporting SPEC results, only the “train” inputs can be used for profiling. Typically the
train and test inputs are smaller than the reference inputs.

4.1. Metrics for Comparing Profiles

Evaluating the effectiveness of a metric is difficult: a “good” metric is one that turns out to predict
or measure something useful. We do not have a dynamic profiling/optimization system in which to
evaluate our metric, so this section uses static branch prediction accuracy as a stand-in for perfor-
mance. This is somewhat unsatisfying: we would really like to try our metric in an operating
dynamic profiling and optimization system with a concrete goal such as performance, power, cost,
etc. Evaluating our metric in other systems with other performance criteria is beyond the scope of
this study. 

Training run All ref test train

Benchmark Static Static Dynamic Static Dynamic Static Dynamic

099.go 5740 5603 3669393694 5464 1833855003 5046 59750628

124.m88ksim 1418 1408 8135706733 1219 61291271 1164 11682553

126.gcc 19370 14592 26190611 18565 199369904 18644 202317776

129.compress 430 430 4975851051 407 216427 415 3496670

130.li 879 870 8605396422 635 148521036 636 25032723

132.ijpeg 1373 1338 1515921676 1354 42129447 1365 93933314

134.perl 2307 2080 3114254002 1630 1186183 2047 5141087

147.vortex 6501 6482 9334649279 6488 1088823792 6487 302461902

Table 6: Benchmark and profile branch counts. 
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Table 7 lists a plethora of statistics for each benchmark. The columns list assumed-actual pro-
file pairs, i.e., each statistic was collected by training with the assumed data set then testing using
the actual data set. There are seven rows for each benchmark. The first four show static and
dynamic values for the coverage and conflict metrics defined in Section 1; these have values
between 0 and 1. To simplify viewing, we have shaded all cases where dynamic coverage was less
than 95% or dynamic conflict exceeded 5%. The next row lists our edge-based relative entropy
metric; this ranges from 0 to infinity. The last two rows show the static branch prediction accura-
cies; these take values from 0 (bad) to 1 (perfect). The “resub.” row lists the prediction accuracy
from training and testing on the actual data set (it ignores the assumed data set, so we see identical
numbers for the same actual data set); this is provided as an upper bound on possible static predic-
tion accuracy. The “x-validated” row shows the prediction accuracy when training on the assumed
data set and running on the actual data set; in all cases the cross-validated value will be less than
the resubstitution value. To simplify viewing, we have shaded all cases where prediction accuracy
drops by more than 2% from the resubstitution value to the cross-validated value. 

Many of the static coverage values seem low: every benchmark except 132.ijpeg and 147.vor-
tex have some assumed-actual pair where the static coverage is lower than 95%. In contrast, only a
few of the dynamic coverage statistics are poor (124.m88ksim test-*, 129.compress test-ref, four of
the 6 cases on 134.perl). For these profiles, low dynamic coverage seems a much better indicator
of poor prediction performance than low static coverage. Unsurprisingly, low dynamic coverage
always occurs with a large drop from resubstitution prediction accuracy to cross-validated predic-
tion accuracy (when there is no coverage from the assumed data set, we predict branches will be
taken). Coverage is a necessary but not sufficient condition for a good profile.

Static conflict is as unilluminating as static coverage: all benchmarks except 129.compress,
132.ijpeg, and 147.vortex have some assumed-actual pair with greater than 5% static conflict.
Dynamic conflict is much better: all values greater than 5% correspond to cases where prediction
accuracy has dropped by more than 2% from resubstitution to cross-validation. This is also unsur-
prising, as dynamic conflict is almost the definition of cross-validated misprediction rate.5 Using
high dynamic conflict as an indicator that profiles differ misses a few cases: 3 cases on
124.m88ksim, 3 cases on 129.compress, and 4 cases on 130.li. Tightening the threshold to 2%
would catch all of these cases without generating any false positives. 

Our metrics based on relative entropy do a reasonable but imperfect job identifying cases
where prediction accuracy drops from resubstitution to cross-validation. For most of the bad pre-
diction accuracy cases, the metrics attain values above 1. But this threshold gives some false nega-
tives: 129.compress ref-train, two cases on 130.li, and there are also false positives: 124.m88ksim
ref-train, 126.gcc ref-test, 129.compress train-test, and 132.ijpeg ref-train and ref-test. Using a dif-
ferent threshold than 1 trades off false positives for false negatives. These results are encouraging
because they suggest that our metrics are indeed useful for measuring profile similarity; they
would be more encouraging if we could beat dynamic conflict as well. But as we see in the next

5. Most of the numbers appear as if the dynamic coverage is the difference between resubstitution and cross-validation
prediction accuracy. This would only be the case if branches that reversed direction always fell through or always
jumped. We can infer that most of the execution frequency of branches that reversed direction came from strongly biased
branch instructions.
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section, our metrics are beneficial when synthesizing a hybrid profile from a pair of original pro-
files. 

4.2. Combining Profiles Using Relative Entropy

Table 8 shows prediction accuracies for a variety of combining strategies for each benchmark.
Each column lists the actual (testing) profile; in that column, the other two profiles were combined
to build the training profile. As in Table 7, the “resubstitution” row shows the upper bound predic-
tion accuracy from training and testing on the same benchmark. The rows labeled “unscaled,”
“scaled,” and “polling” correspond to Fisher and Freudenberger’s unscaled, scaled, and polling

Assumed test- train- ref- train- ref- test- test- train- ref- train- ref- test-

Actual ref ref test test train train ref ref test test train train

Metric

stat. cover

09
9.

go

0.9522 0.8938 0.9764 0.8840 0.9925 0.9572

13
0.

li

0.7195 0.7310 0.9858 0.9150 1.0000 0.9135

dyn. cover 1.0000 0.9998 0.9986 0.9984 1.0000 1.0000 0.9883 0.9827 0.9941 0.9793 1.0000 0.9982

stat. conf. 0.1087 0.1624 0.0943 0.1720 0.1140 0.1375 0.2379 0.2276 0.0882 0.1008 0.0645 0.0912

dyn. conf. 0.0025 0.0074 0.0030 0.0086 0.0050 0.0059 0.0583 0.0418 0.0780 0.0374 0.0395 0.0464

KL edge 0.0316 0.2792 0.1503 0.3771 0.1982 0.1887 1.4965 2.4849 1.0253 2.7121 0.4329 0.8071

resub. 0.7709 0.7709 0.7723 0.7723 0.7555 0.7555 0.8512 0.8512 0.8751 0.8751 0.8800 0.8800

x-validated 0.7684 0.7635 0.7693 0.7637 0.7505 0.7496 0.7929 0.8094 0.7971 0.8377 0.8405 0.8336

stat. cover

12
4.

m
88

ks
im

0.8636 0.8217 0.9975 0.8154 0.9940 0.8540

13
2.

ij
pe

g

0.9963 0.9948 0.9845 0.9963 0.9751 0.9883

dyn. cover 0.9113 0.9969 1.0000 0.9950 1.0000 0.8498 1.0000 1.0000 0.9816 1.0000 0.9866 0.9999

stat. conf. 0.0902 0.1321 0.0353 0.1526 0.0395 0.1091 0.0120 0.0105 0.0199 0.0126 0.0249 0.0190

dyn. conf. 0.0238 0.0207 0.0003 0.0446 0.0180 0.0589 0.0001 0.0001 0.0096 0.0008 0.0049 0.0004

KL edge 8.9533 3.7468 0.2066 5.4362 2.0927 17.3343 0.4944 0.1775 2.6925 0.1655 1.5523 0.1590

resub. 0.9209 0.9209 0.9291 0.9291 0.9373 0.9373 0.8909 0.8909 0.8902 0.8902 0.8954 0.8954

x-validated 0.8971 0.9002 0.9288 0.8845 0.9192 0.8784 0.8908 0.8908 0.8806 0.8893 0.8905 0.8950

stat. cover

12
6.

gc
c

0.9885 0.9908 0.7769 0.9624 0.7755 0.9583

13
4.

pe
rl

0.6750 0.9837 0.8613 0.8601 0.9995 0.6849

dyn. cover 0.9999 0.9999 0.9860 0.9997 0.9964 0.9999 0.8935 1.0000 0.7293 0.7293 1.0000 0.8814

stat. conf. 0.0539 0.0527 0.1671 0.0617 0.1658 0.0630 0.2375 0.0212 0.1564 0.1571 0.0142 0.2325

dyn. conf. 0.0023 0.0037 0.0060 0.0031 0.0052 0.0043 0.0901 0.0013 0.2263 0.2277 0.0015 0.0859

KL edge 0.1553 0.1536 1.3982 0.1939 0.4707 0.1516 13.4143 0.0875 34.2514 32.8709 0.1551 14.1100

resub. 0.8911 0.8911 0.8892 0.8892 0.8759 0.8759 0.9168 0.9168 0.9370 0.9370 0.9126 0.9126

x-validated 0.8888 0.8874 0.8832 0.8860 0.8708 0.8716 0.8266 0.9155 0.7107 0.7093 0.9112 0.8267

stat. cover

12
9.

co
m

pr
es

s

0.9465 0.9651 1.0000 1.0000 1.0000 0.9807

14
7.

vo
rt

ex

0.9981 0.9978 0.9972 0.9997 0.9971 0.9998

dyn. cover 0.7824 0.9990 1.0000 1.0000 1.0000 0.9913 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

stat. conf. 0.0465 0.0395 0.0246 0.0147 0.0241 0.0217 0.0068 0.0120 0.0079 0.0076 0.0129 0.0076

dyn. conf. 0.2142 0.1376 0.0539 0.0121 0.0511 0.0383 0.0002 0.0007 0.0006 0.0004 0.0006 0.0004

KL edge 24.0538 1.5464 6.1607 2.1490 0.6366 2.5058 0.2340 0.7902 0.1591 0.1149 0.3289 0.0726

resub. 0.8681 0.8681 0.9412 0.9412 0.8484 0.8484 0.9857 0.9857 0.9802 0.9802 0.9782 0.9782

x-validated 0.6539 0.7305 0.8873 0.9292 0.7972 0.8100 0.9855 0.9850 0.9796 0.9798 0.9776 0.9778

Table 7: Metrics comparing pairs of profile inputs
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methods, respectively. The row labeled, “KL” gives the prediction accuracy from building a
hybrid table using the parameterized distribution  then minimizing the relative entropies from

 to the two training data sets. For each benchmark and each column, we have shaded the best
(largest) non-resubstitution prediction accuracy entries. 

Two profiles are usually better than one: the best blending method often does better than the
best cross-validated single-profile prediction accuracy (the exceptions are 099.go test-ref and ref-
train, 129.compress train-test, and 134.perl train-ref). This matches our intuitions that blending
multiple profiles ought to give a better description of program performance than using a single
profile will. 

In the contest of combining methods, the unscaled method is best 9 times out of 24; the scaled
method is best 7 times; the polling method is best twice (matching Fisher and Freudenberger’s
observations), and our “KL” method is best 15 times (counting ties for all methods that tie). The
“KL” method is also very close when it is not the absolute best; the only bad cases are 129.com-
press test and 134.perl ref. 

A slightly more quantitative metric is the difference between each combining method and the
empirically best combining method for each benchmark. In the learning theory community, this
difference is known as regret. More formally, if we use methods a, b, and c on a test and they
achieve scores Sa, Sb, and Sc respectively, with Sc the best, then the regret for method a is Sc-Sa,

Assumed
test

train
ref

train
ref

test
test

train
ref

train
ref

test

Combiner Actual ref test train ref test train

resubstitution

09
9.

go

0.7709 0.7723 0.7555

13
0.

li

0.8512 0.8751 0.8800

unscaled 0.7683 0.7693 0.7503 0.8016 0.7971 0.8403

scaled 0.7683 0.7683 0.7504 0.8015 0.8282 0.8618

polling 0.7653 0.7671 0.7503 0.7975 0.7864 0.8252

KL 0.7669 0.7659 0.7504 0.8136 0.8486 0.8732

resubstitution

12
4.

m
88

ks
im

0.9209 0.9291 0.9373

13
2.

ij
pe

g

0.8909 0.8902 0.8954

unscaled 0.9204 0.9288 0.9192 0.8908 0.8890 0.8949

scaled 0.9206 0.9204 0.9190 0.8908 0.8894 0.8914

polling 0.8955 0.9259 0.8787 0.8909 0.8806 0.8905

KL 0.9200 0.9288 0.9192 0.8908 0.8893 0.8950

resubstitution

12
6.

gc
c

0.8911 0.8892 0.8759

13
4.

pe
rl

0.9168 0.9370 0.9126

unscaled 0.8886 0.8862 0.8717 0.9147 0.7107 0.9112

scaled 0.8886 0.8866 0.8720 0.9126 0.7052 0.9084

polling 0.8876 0.8831 0.8700 0.8497 0.7093 0.8485

KL 0.8889 0.8867 0.8720 0.9058 0.7107 0.9112

resubstitution

12
9.

co
m

pr
es

s 0.8681 0.9412 0.8484
14

7.
vo

rt
ex

0.9857 0.9802 0.9782

unscaled 0.7305 0.8873 0.7972 0.9855 0.9796 0.9776

scaled 0.7300 0.9118 0.8013 0.9851 0.9800 0.9778

polling 0.6496 0.9176 0.8003 0.9851 0.9798 0.9777

KL 0.7305 0.8873 0.8253 0.9850 0.9798 0.9778

Table 8: Prediction accuracies for combining methods for all benchmarks

Pλ
Pλ
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the regret for method b is Sc-Sb, and the regret for method c is 0. The average regret works out to
1.97% for the unscaled method, 1.23% for the scaled method, 5.70% for the polling method, and
0.57% for our “KL” method. 

The differences in prediction accuracies listed in Table 8 are not often very large and the trends
are noisy and hard to detect. For example, the “KL” combining method does significantly better
than the scaled method only on the benchmark 130.li; the other benchmarks and data sets show
much smaller differences. Nevertheless, for these benchmarks and inputs, our relative-entropy-
based combining method turns out well. It seem worthwhile to look at other performance metrics,
benchmarks, and data sets; we expect our techniques to work well in other contexts. 

Unfortunately, the SPEC rules do not currently allow blending the “train” and “test” input data
sets to use on the “ref” input data set. However, for the cases where there are multiple program
runs within an input data set, our combining method may do a better job of combining the profiles
from those multiple runs.

5. Discussion

Kistler and Franz (1998) treated each profile as a vector in the space , where  is the number of
items in the profile (nodes, edges, or paths). They then built a metric with values in the range [0,1]
based on the geometric angle and the vector distance between the two vectors. Their metric is sym-
metric: the distance from profile A to profile B is the same as the distance from profile B to profile
A. This does not reflect the way that profiles can be useful: profile A may be a good training set for
profile B without the reverse being true. Kistler and Franz’ goal was to determine when program
behavior had changed significantly enough to warrant reoptimization; their metric may be very
good at this but they unfortunately do not include any experimental examples. 

One obvious problem with our metric and our combining method is their heavy reliance on
floating point computations. It is future work to find fast, on-line ways to compute them using sim-
pler operators and/or integers. Another obvious practical problem is how to combine more than
two profiles at the same time. 

An intriguing work by Wang and Rubin suggests that it is possible to combine too many pro-
files and over generalize beyond the point that is useful to a particular user (Wang & Rubin, 1998).
In other words, combining a few profiles turned out to be beneficial, but after a certain point, addi-
tional profiles led to decreasing and eventually negative marginal benefits from an individual
user’s perspective. It would be interesting to see if our metrics can shed light on the nature of this
problem. 

Point profiles make an independence assumption in summarizing frequencies of profiled
events without regard to the correlations between the events. Our relative entropy metric, ,
makes a similar simplifying assumption in stating that the events used to make up the profiles are
independent and identically distributed. But events in the program trace are not independent or
identically distributed: seeing one node or edge strongly constrains the next node or edge that will
appear. Path profiles attempt to capture the correlations between some limited number of events in
the program; relative entropy similarly generalizes into a Markov-chain based metric called diver-
gence; the size of the Markov chain is similar to the profiling depth in a general path profile
(Young, 1997). We have not yet applied divergence to path profiles, but we expect to be able to
compare and combine them in a similar manner to what we have shown here.

Rn n

Dedge
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6. Conclusion

We introduced a new approach to analyzing, comparing, and combining profiles that uses informa-
tion theoretic ideas. Our comparison metric appears useful but would be more interesting if we
could test it in a real system. Our combining method beats all previous approaches to combining
profiles from different runs of our programs. There are many concepts in information theory that
directly relate to problems in feedback-directed optimization; we expect to find better ways to ana-
lyze and explain the behavior of such systems and better and new techniques through the fusion of
the two fields. 
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