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Abstract
Branch mispredictions are a major obstacle to exploiting instruction-level parallelism, at least

in part because all instructions after a mispredicted branch are squashed. However, instructions that
arecontrol independentof the branch must be fetched regardless of the branch outcome, and do not
necessarily have to be squashed and re-executed. Control independence exists when the two paths
following a branch re-converge.

A trace processor microarchitecture is developed to exploit control independence and thereby
reduce branch misprediction penalties. There are three major contributions. 1) Trace-level re-con-
vergence is not guaranteed despite re-convergence at the instruction-level. Novel trace selection
techniques are developed to expose control independence at the trace-level. 2) Control indepen-
dence’s potential complexity stems from insertion and removal of instructions from the middle of
the instruction window. Trace processors manage control flow hierarchically (traces are the funda-
mental unit of control flow) and this results in an efficient implementation. 3) Control independent
instructions must be inspected for incorrect data dependences caused by mispredicted control flow.
Existing data speculation support is easily leveraged to selectively re-execute incorrect-data depen-
dent, control independent instructions.

Control independence improves trace processor performance from 2% to 25%, and 13% on
average, for the SPEC95 integer benchmarks.

1.  Introduction

Dynamically scheduled superscalar processors achieve high performance by extracting instruc-
tion-level parallelism (ILP) from ordinary, sequential programs. Because there are data depen-
dences among instructions, finding a sufficient number of independent instructions to execute in
parallel requires examining and scheduling a large group of instructions, called theinstruction
window. The larger this window, the farther a processor may “look ahead” into the program — and
the greater the chance of finding independent instructions.

Branch instructions are a major obstacle to maintaining a large window of useful instructions
because they introduce control dependences: the next group of instructions to be fetched following
a branch instruction depends on the outcome of the branch. High performance processors deal
with control dependences by using branch prediction. Predicting branch outcomes allows instruc-
tion fetching and speculative execution to proceed despite unresolved branches in the window.
Unfortunately, branch mispredictions still occur, and current implementations squash all instruc-
tions after a mispredicted branch, thereby limiting the effective window size. Following a squash,
the window is often empty and several cycles are required to re-fill it before instruction execution
proceeds at full efficiency.



Often only a subset of dynamic instructions immediately following a branch truly depend on
the branch outcome, however. These instructions arecontrol dependenton the branch. Other
instructions deeper in the window may becontrol independentof the mispredicted branch: they
will be fetched regardless of the branch outcome, and do not necessarily have to be squashed and
re-executed (Lam & Wilson, 1992; Sohi et al. 1995).

Control independence typically occurs when the two paths following a branch re-converge
before the control independent instruction, as depicted in Figure 1. Upon detecting the mispredic-
tion, the incorrect control dependent instructions are squashed and replaced with the correct con-
trol dependent ones, but processing of control independent instructions can proceed relatively
unaffected. Exploiting control independence requires three basic mechanisms outlined below.

1. The re-convergent point must be identified in order to distinguish and preserve the control inde-
pendent instructions in the window.

2. The processor must support insertion and removal of control dependent instructions from the
middle of the window.

3. The mispredicted control flow may cause some incorrect data dependences to be formed
between control independent instructions and instructions before the re-convergent point.
These incorrect data dependences must be repaired and the incorrect-data dependent, control
independent instructions selectively re-executed.

Control independence is an effective technique for mitigating the effects of branch mispredic-
tions. A recent study shows potential performance improvements of 30% in wide-issue superscalar
processors (Rotenberg et al. 1999a). However, practical mechanisms for the three outlined require-
ments need to be explored. In the study by Rotenberg et al. (1999a), control dependence informa-
tion is ideally conveyed from the compiler to hardware for identifying re-convergent points, yet
simple hardware-only detection of re-convergent points is desirable. And the reorder buffer of
superscalar processors is managed as a fifo with insertion and removal of instructions performed
only at the head and tail of the fifo, not in the middle. Arbitrary expansion and contraction, begin-
ning and ending atany pointin the window, may be complex. Finally, conventional register and
memory dependence mechanisms are inadequate for control independence. A new overall data
flow management strategy is needed — one that supports data speculation in general.

In this paper, thetrace processormicroarchitecture (Vajapeyam & Mitra, 1997; Rotenberg et
al. 1997) is explored as a practical and effective platform for control independence.

Figure 1: Control independence example.

branch

correct
control dependent

instructions

incorrect
control dependent

instructions

control independent
instructions



1.1  Trace Processor Control Independence

A trace processor (Figure 2) is organized entirely aroundtraces, long dynamic instruction
sequences spanning multiple basic blocks and constrained primarily by a hardware-determined
maximum length. Traces introduce a larger granularity of work and therefore hierarchy.

Rather than predicting, fetching, and dispatching/renaming instructions as individual units, the
frontend of the trace processor works more efficiently at the higher level of traces. Traces are pre-
dicted using a next-trace predictor (Jacobson et al. 1997) which implicitly predicts multiple
branches each cycle with only a single trace prediction. Traces themselves are stored in a trace
cache (Johnson, 1994; Peleg & Weiser, 1995; Rotenberg et al. 1996; Patel et al. 1997) for low-
latency, high-bandwidth instruction fetching. Traces are also efficiently dispatched and renamed as
a unit (Vajapeyam & Mitra, 1997):intra-trace valuesare pre-renamed in the trace cache, so only
inter-trace values (live-in and live-out registers) need to be dynamically renamed.

The instruction window and issue mechanisms are distributed among multiple processing ele-
ments (PEs) (Vajapeyam & Mitra, 1997). Each PE is allocated a single trace. Fast instruction issue
and bypassing of intra-trace values are possible due to a small (trace-sized) window and modest,
dedicated issue bandwidth within each PE.

Trace processor control independence mechanisms are described in the following three sub-
sections. We begin with the hierarchical instruction window and how it is inherently suited to flex-
ible window management. Then, the interesting problem of ensuring and identifyingtrace-level
re-convergenceis described. Finally, we describe how the selective misspeculation recovery model
of trace processors (Rotenberg et al. 1997) supports the data flow management requirements of
control independence.

Figure 2: Trace processor.
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1.1.1  Exploiting Hierarchy: Flexible Window Management

The hierarchical instruction window enables flexible window management in two ways.

1. Hierarchical management of control flow. In some cases it is possible to isolate the effects of
intra-trace control flowfrom inter-trace control flow. This is true if the longest control depen-
dent path of a branch fits entirely within a trace. If such a branch is mispredicted, instructions
following the branch but in the same trace are squashed, while subsequent traces are not
squashed. Within a PE, a simple (non-selective) squash model is preserved, yet at a higher level
it appears as if instructions are inserted/removed from themiddle of the instruction window.

This is calledfine-grain control independence (FGCI)because the branch and its re-convergent
point are close together. Figure 3 shows an example in which a misprediction inPE1 affects
only control flow within the PE, and inter-trace control flow (links between PEs) is unaffected.

Figure 3: Flexible window management:fine-grain control independence.

2. Hierarchical management of resources. If one or more control dependent paths of a branch are
longer than a trace, then recovering from a misprediction involves squashing and inserting an
arbitrary number of traces in the middle of the window. To do so, the PEs are managed as a
linked-list instead of a fifo. This is no more complex than fifo management, however, because
the unit of insertion/removal (a trace) is large and therefore efficient to manage.

This is calledcoarse-grain control independence (CGCI)because the branch and its re-conver-
gent point are in different traces. Figure 4 shows an example in which two tracest2 andt3 must
be removed from the middle of the instruction window and tracet6 inserted in their place.

1.1.2  Trace Selection: Ensuring and Identifying Trace-level Re-convergence

Trace-based window management simplifies arbitrary instruction insertion and removal but intro-
duces a new problem. Although control flow eventually re-converges after a branch,trace-level re-
convergenceis not guaranteed. Consider Figure 5(a), in which the two control dependent paths of
the branch are of different lengths. In Figure 5(b), a different set of traces is selected depending on
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the direction of the branch, even traces after the re-convergent point. I.e. re-convergence is not
manifested at the trace-level.

Figure 4: Flexible window management:coarse-grain control independence.

Trace-level re-convergence must be ensured in order to exploit both FGCI and CGCI. This
rests withtrace selection, the algorithm for dividing the dynamic instruction stream into traces.
Essentially, trace selection must synchronize the control dependent paths of a branch so that
regardless of which path is taken, the same sequence of control independent traces are selected.
Traces may be synchronized at the re-convergent point itself, but more generally at any control
independent point after the re-convergent point. We develop two different trace selection tech-
niques to address FGCI and CGCI separately.

Small if-then , if-then-else , and nestedif-then-else constructs that do not con-
tain loops or function calls are ideally suited to FGCI mechanisms. First, they have fixed-length
and relatively short control dependent paths, most of which fit within a trace. Table 5 in
Section 6.2 shows that in the worst case, less than 10% of these constructs have a control depen-
dent path longer than 32 instructions. Secondly, they account for a large enough fraction of mispre-
dictions (20% - 60%) to be specially targeted for control independence. Lastly, these regions can
be precisely and efficiently detected by hardware because of their directed, acyclic control flow.

We propose a hardware algorithm that detects these forward-branching regions, locates the re-
convergent point that closes the region, and computes the length of the longest control dependent
path through the region. Trace selection then uses this information to conceptually “pad” any
selected path until its length matches the longest path. By equalizing path lengths, trace selection
synchronizes control dependent paths at the re-convergent point — this is shown in Figure 5(c).
This padding technique enables traces to expand or contract to recover from mispredictions, with-
out affecting the boundaries of subsequent traces, similar totasksin multiscalar processors (Sohi
et al. 1995). Section 3 describes how forward-branching regions are detected and analyzed, and
how trace selection uses the resultant information to expose FGCI.
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Figure 5: Trace-level re-convergence problem.

All other branches are covered by CGCI. In the extreme case, trace selection could search for
the precise, i.e. nearest, control independent points for all branches, and then use these points to
delineate traces. However, experience with this approach has yielded negative results. There are so
many re-convergent points that synchronizing at every one of them creates a large number of small
traces, worsening PE utilization, trace cache performance, and trace predictor performance.

Instead, trace selection can exploit a limited number of easily identified, “global” control inde-
pendent points in the dynamic instruction stream. Loop back-edges, loop exits, and subroutine
return points are all examples of global re-convergent points (Rotenberg et al. 1997, 1999a;
Akkary & Driscoll, 1998). To ensure trace-level re-convergence for CGCI branches, traces are
delineated at chosen global re-convergent points — as shown in Figure 5(d). Then, if a branch is
mispredicted, an exposed global re-convergent point nearest the branch is found in the window and
assumed to be the first control independent trace. Section 4 describes CGCI trace selection.

1.1.3  Managing Data Dependences

A mispredicted branch instruction causes not only incorrect control flow, but potentially incorrect
data flow as well. After repairing the control flow, control independent instructions must be
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inspected for incorrect data dependences both through registers and memory, and any incorrect-
data dependent instructions selectively reissued.

A primary feature of trace processors is the pervasive use of data speculation — value predic-
tion (e.g., Lipasti, 1997), load/store address prediction (e.g., Sazeides et al. 1996), and speculative
memory disambiguation (e.g., Franklin & Sohi, 1996). Selective misspeculation recovery, there-
fore, was anticipated as an important problem and played a central role in the trace processor
microarchitecture (Rotenberg et al. 1997). The selective recovery model as it applies to control
independence is reviewed in Section 2.2.

1.2  Related Work

Lam and Wilson’s limit study (1992) demonstrates that control independence exposes a large
amount of instruction-level parallelism, on the order of 10 to 100, for control-intensive integer
benchmarks. This work was followed up by Uht and Sindagi (1995) in their study of “minimal
control dependences” and showed similar results.

A recent study (Rotenberg et al. 1999a) examines the potential of control independence in the
context of wide-issue superscalar processors. An aggressive implementation achieves improve-
ments on the order of 30%. The proposed mechanisms are complex due to the non-hierarchical
superscalar organization, and there is a reliance on the compiler to provide complete control
dependence information. Nonetheless, the study is useful for understanding control independence.

Multiscalar processors (Franklin, 1993; Sohi et al. 1995), Dynamic Multithreading (Akkary &
Driscoll, 1998), and other multithreaded architectures (Oplinger et al. 1997; Steffan & Mowry,
1998; Dubey et al. 1995; Tsai & Yew, 1996) exploit control independence by pursuing multiple
flows of control. Either the compiler or hardware partitions the program into tasks/threads, or sub-
graphs of the CFG, which may contain arbitrary control flow. Branch mispredictions within a task/
thread may not cause subsequent tasks to squash if they are control independent of the branch.

The instruction reuse buffer (Sodani & Sohi, 1997) provides another way of exploiting control
independence. It saves instruction input and output operands in a buffer — recurring inputs can be
used to index the buffer and determine the matching output. In the proposed superscalar processor
with instruction reuse, there is complete squashing after a misprediction. However, control inde-
pendent instructions after the squash can be quickly re-evaluated via the reuse buffer.

Another approach using a dual reorder buffer design was proposed by Chou et al. (1999). A
misprediction squashes one of the reorder buffers, but control and data independent instructions
from the second reorder buffer are preserved.

Dynamic Hammock Predication (DP) (Klauser et al. 1998) is loosely related to the FGCI con-
cepts developed in this paper, only in that both techniques exploitif-then-else constructs.
There are clear distinctions: 1) FGCI places full trust in branch prediction and reduces penalties
when mispredictions do occur, whereas DP eagerly executes multiple control dependent paths in
anticipation of mispredictions. 2) FGCI implementsdynamic detectionof control flow constructs,
whereas DP still requires the compiler to identify and markif-then-else regions for predica-
tion (FGCI could make DP fully dynamic). 3) Our FGCI algorithm dynamically analyzes arbi-
trarily complex, nested forward-branching code, whereas DP is restricted to regions containing
only a single conditional branch.

The SIMP architecture (Murakami et al. 1989) fetches multiple control dependent paths after a
branch. Special hardware 1) detects re-convergence and 2) establishes allpotential data depen-
dences between control independent instructions and instructions before the re-convergent point.
The result is an interesting predication/control independence hybrid: instructions are selectively
discarded but not inserted (similar to predication approaches); data dependent/control indepen-



dent instructions may re-issue several times due to having multiple, alternative data dependences
(similar to control independence approaches).

Vajapeyam and Mitra (1997) and Rotenberg et al. (1997) described the advantages of trace
processors in terms of complexity and performance. Control independence in trace processors is
briefly introduced by Rotenberg et al. (1997) but, because it is not the focus of that paper, the
major issues are not formalized, conveyed, nor fully understood. The problem is not formalized in
terms of FGCI and CGCI control flow management, and trace-level reconvergence and its implica-
tions to trace selection are not discussed. Performance gains are observed in only two of the bench-
marks and these gains are due to manually-inserted, FGCI-like trace selection hints conveyed in
the benchmark binaries; PEs are managed in a fifo queue so CGCI is not explicitly exploited.

Other related work includes trace selection studies for trace caches and trace processors (Peleg
& Weiser, 1995; Rotenberg et al. 1996, 1997; Patel et al. 1997, 1998), trace selection for compilers
(Fisher, 1981; Hwu & Chang, 1988), and task selection for multiscalar processors (Vijaykumar,
1998; Vijaykumar & Sohi, 1998).

1.3  Paper Organization

Section 2 describes the trace processor’s novel window management, i.e. support for instruction
insertion/removal from the middle of the window (both control flow and data flow aspects). This is
followed by trace selection for ensuring trace-level re-convergence, for both FGCI (Section 3) and
CGCI (Section 4). Our experimental setup is described in Section 5, and Section 6 provides per-
formance analysis.

2.  Trace Processor Window Management

In Section 1.1.1, we highlighted the two ways in which trace processors flexibly insert and remove
instructions from the middle of the instruction window: FGCI and CGCI. The following two sec-
tions provide details regarding control flow and data flow management, respectively.

2.1  Managing Control Flow

Sophisticated control flow management is performed by the trace processor frontend, shown in
Figure 6, since it controls PE allocation (trace dispatch) and deallocation (trace squash).

The trace predictor and trace cache together provide trace-level sequencing. Ideally, during
trace-level sequencing the next trace is predicted correctly, and it hits in the trace cache. The trace
is passed to the dispatch stage where live-in and live-out registers are renamed, establishing the
register dependences with previous traces in the processor. The renamed trace is allocated to a PE
via the dispatch bus.

Trace-level sequencing does not always provide the required traces to the PEs. Instruction-
level sequencing is required to construct non-existent traces or repair trace mispredictions. The
trace construction hardware consists of multipleoutstanding trace buffers, one per PE. On a trace
cache miss, the respective trace buffer is notified to construct a new trace. It uses the trace predic-
tion (starting PC and branch outcomes) to fetch instructions from the instruction cache. Mean-
while, the trace dispatch pipe is stalled — no other traces may pass through renaming because of
the missing trace. However, the fetch stage is free to continue predicting traces, and these traces
are placed in their outstanding trace buffers despite not reaching the dispatch stage. When the
missing trace has been constructed and pre-renamed, the dispatch pipe is restarted and supplied
with traces from the buffers in sequential order. The non-blocking fetch pipe allows multiple trace



cache misses to be serviced in parallel, restricted only by the number of datapaths to/from the
instruction cache and branch predictor.

Figure 6: Frontend of the trace processor.

On a trace cache hit, the trace is not only dispatched to the PE but also placed in the corre-
sponding trace buffer. The trace buffer monitors branch outcomes as they become available from
the PE. If a misprediction is detected, the trace predictor is backed up to that trace, as are the glo-
bal register rename maps. Also, the trace buffer begins repairing the trace from the point of the
branch misprediction, using the simple branch predictor to fetch instructions. However, subse-
quent PEs and their traces are not affected at this point, i.e. they continue processing instructions.
When the mispredicted trace has been repaired, the trace-level sequencer is restarted in one of two
ways, depending on whether the branch is covered by fine- or coarse-grain control independence.

1. Fine-grain: Control flow recovery for FGCI is very simple because the PE arrangement is unaf-
fected. The frontend merely dispatches the repaired trace from its trace buffer to the affected
PE. Within the affected PE, only instructions after the mispredicted branch are squashed.

At this point, the register rename map reflects correct register dependences up to and including
the repaired trace; atrace re-dispatch sequence, described in the next section, makes a pass
through the control independent traces to update their register dependences.

2. Coarse-grain: First, the sequencing hardware locates an exposed global re-convergent point in
the window — the oneafterand generallynearestthe mispredicted trace. CGCI trace selection
(Section 4) detects and chooses certain global re-convergent points at which to terminate traces;
these points are always “exposed” as trace boundaries and, therefore, visible to the sequencing
hardware. Note that an exposed global re-convergent point may not exist in the window, in
which case CGCI is not exploited. Even if one is located, it may or may not actually be control
independent with respect to the mispredicted branch.

Next, the traces between the mispredicted branch and the first (assumed) control independent
trace are squashed and their PEs deallocated. The trace predictor fetches the correct control

trace buffers
outstanding

Cache
Trace

Predictor
Trace

trace dispatch

dispatch bus

free list

global
rename
maps

Predictor
Branch

Cache
Instr

cache fills

pred updates
&

branch outcomes



dependent traces and they are allocated to newly freed PEs. Squashing and allocating PEs pro-
ceed in parallel, just as dispatch and retirement proceed in parallel. If there are more correct
control dependent traces than incorrect ones, then PEs must be reclaimed from the tail (i.e. the
most speculative PE).

Finally, the control flow is successfully repaired when re-convergence is detected, i.e.when the
next trace prediction matches the first control independent trace. Although re-convergence is
not guaranteed, if and when it occurs, a trace re-dispatch sequence is performed on the control
independent traces to update their register dependences, as described in the next section.

With CGCI, the logical or program order of PEs can no longer be inferred from just the head/
tail pointers and thephysicalorder of PEs. Logically inserting and removing PEs between two
arbitrary PEs, i.e. inserting and removing control dependent traces, requires managing the PEs as a
linked-list. The linked-list control structure is simply a small table indexed by physical PE number,
with each entry containing three fields: logical PE number (order in the list) and pointers to the
previous and next PEs. Also, head PE and tail PE pointers are needed as before. The control struc-
ture (table plus head/tail pointers) is consulted and possibly updated by the trace-level sequencer
when dispatching, retiring, squashing, and re-dispatching traces.

2.2  Managing Data Flow

After the sequencing hardware repairs control flow, incorrect-data dependent, control independent
instructions must be identified and selectively reissued. The first step is to detect the “source” of a
data dependence violation and reissue that instruction. There are two possible sources: 1) a stale
physical register name representing an incorrect register dependence, or 2) a load instruction that
loaded an incorrect version of a memory location. The second step is to selectively reissue all sub-
sequent data dependent instructions.

2.2.1  Stale Physical Register Names

The frontend initiates atrace re-dispatch sequenceafter control flow is repaired. Control indepen-
dent traces are re-dispatched in sequential (program) order from the trace buffers to respective
PEs. Live-in registers are renamed using the updated maps, and live-out registers do not change
their mappings. The source register names of each instruction in the PE-resident trace are checked
against those in the re-dispatched trace. Only those instructions with updated register names are
reissued.

2.2.2  Incorrect Loads

For memory dependences, we leverage the existing mechanism for detecting incorrectly disambig-
uated loads (Rotenberg et al. 1997). Speculative memory disambiguation is performed in that 1)
loads issue as soon as their addresses are available, irrespective of prior stores in the window, and
2) load and store addresses may be predicted or based on speculative values.

All loads and stores are assigned sequence numbers that indicate their program order within
the window. Sequence numbers are derived from the PE number plus location in the PE’s trace. A
variant of theaddress resolution buffer(ARB) (Franklin & Sohi, 1996) resides before the data
cache to maintain a list of speculative versions per address location; i.e. speculative store data is
buffered and arranged in program order via sequence numbers. When a store is performed, it sends
its address, data, and sequence number on one of the cache ports. When a load is performed, it
queries the ARB with its address and sequence number. The ARB returns the correct version of



data for that loadand the sequence number of the store that produced the data. Thus, loads main-
tain two sequence numbers: its own and that of the load data.

Detection of memory dependence violations is based on loadssnoopingstore addresses and
sequence numbers on the cache ports. A load must reissue if 1) the store address matches the load
address, 2) the store sequence number is logically less than that of the load (i.e. the store is before
the load in program order), and 3) the store sequence number is logically greater than that of the
load data (i.e. the load has an incorrect, older version of the data).

If a store has issued to the ARB using an incorrect address, it must issue again to the correct
address. In the same transaction, it also sends the incorrect address and an indication to perform a
“store undo” operation for that address. Loads snoop the store undo, and reissue if the sequence
number of the store undo matches that of their data.

This same mechanism works for control independent loads that are incorrectly disambiguated
due to mispredicted branches.When a store is removed from the window, i.e. if it is among the
incorrect control dependent instructions, it schedules a store undo operation (only if it has per-
formed already). A store on the correct control dependent path is brought into the window late, and
may appear as a normal disambiguation violation when control independent loads observe the late-
performed store.

Sequence number comparisons first requires translating physical to logical sequence numbers.
In an earlier design (Rotenberg et al. 1997), the PEs are organized in a physical ring and the map-
ping is fairly direct. Now, due to the arbitrary arrangement of PEs, translation requires consulting
the linked-list control structure (each PE maintains a copy). Recall that the linked-list table main-
tains physical to logical PE translations: this field exists solely for disambiguation support.

2.2.3  Selectively Reissuing Dependence Chains

After detecting the “source” of a data dependence violation (stale register name or incorrect load),
the violating instruction is reissued. The second step is to selectively reissue all subsequent data
dependent instructions. This happens transparently in the trace processor because instructions
remain in the PEs until they retire. Therefore, if an instruction has already issued and it receives
one or more additional values, it simply reissues as many times as is necessary.

3.  Trace Selection for FGCI

An example of FGCI trace selection is shown in Figure 7. Basic blocks are labeled with a letterA
throughH, and block sizes are shown in parentheses. Control flow edges are labeled with the long-
est path length leading to that edge. The maximum trace length is 16 in the example.

The branch in block A is a candidate for FGCI because the maximum length of any of its con-
trol dependent paths is 10 instructions, well within the maximum trace length. The region enclosed
in the dashed box (the branch in block A and its control dependent instructions) is called the
embeddable region, and thedynamic region size of this region is its maximum path length, 10.

During trace construction, if a branch with an embeddable region is encountered, the accrued
trace length is incremented by the branch’s dynamic region size,irrespective of which control
dependent path is actually selected. The result will be one of four traces as shown in the table of
Figure 7. First, not all traces are 16 instructions long, only the trace which actually embeds the
longest control dependent path. Second, all traces end at the same instruction, namely the last
instruction in basic block H. This of course achieves the desired effect: if the trace predictor pre-
dicts one trace and it turns out to be incorrect, it can be replaced with one of the alternate traces



without changing the sequence of subsequent control independent traces. Third, any of three
branch mispredictions is covered by this region — the branches in basic blocksA, B, andE.

Exposing FGCI first requires finding branches with embeddable regions (Section 3.1). A
FGCI-algorithm is applied to each newly-encountered branch to check if it has an embeddable
region. If it does, the goal of the algorithm is to determine 1) the re-convergent PC that closes the
region and 2) the dynamic region size. The latter amounts to computing the longest path through a
topologically sorted DAG (Cormen et al. 1990) in hardware. This gathered information is cached
so that it does not have to be re-computed each time a branch is encountered. Then, trace selection
can use the cached information to conceptually pad traces (Section 3.2).

Figure 7: Example of an embeddable region.

3.1  FGCI-algorithm

For brevity, a detailed description of the FGCI-algorithm is deferred to the corresponding thesis
(Rotenberg, 1999b).

The underlying idea is to serially scan a static block of instructions following a forward condi-
tional branch. Only a single pass is required. Conceptually, each instruction is modeled as a node
having one or more incoming control flow edges, each edge having a value equal to the maximum
path length leading to the edge. The algorithm assigns a value to the node equal to the maximum
value of incoming edges plus one for the current instruction. In this way, the longest control depen-
dent path lengths are propagated from incoming edges to outgoing edges.

The key to the algorithm, therefore, is determining all incoming edges to an instruction. The
implicit edge between two sequential instructions is readily apparent. The edges between branches
and their targets require explicit storage. When a branch instruction is scanned, its taken target PC
is recorded along with the path length up to the branch. Each scanned instruction checks its PC
against the list of accumulated branch targets: a hit indicates an incoming edge and its path length
is available.

During scanning, the most distant taken target among forward branches is maintained. There-
convergent pointis detected when scanning reaches this target. Thedynamic region sizeis equal to
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the maximum path length propagated to the re-convergent instruction. The branch forming the
region is not a candidate for FGCI, however, if any computed path length exceeds the maximum
trace length before re-convergence, or if a backward branch, function call, or indirect branch is
encountered before re-convergence.

The FGCI-algorithm has several characteristics amenable to hardware implementation (Roten-
berg, 1999b). First, it performs a single pass which yields a simple controller and simple state
maintenance (3 words of state plus a 4- to 8- entry associative array for edges). Second, limiting
the scan rate to 1 instruction/cycle helps manage complexity as well as reduce bandwidth to the
instruction cache. The design is relatively non-intrusive to the cache port — for the CFG in
Figure 7, 2 or 3 cache line fetches are initiated over 21 cycles, for a line size of 16 words.

The information computed by the FGCI-algorithm is written into a cache called thebranch
information table(BIT). All forward conditional branches allocate entries in the BIT, whether they
have an embeddable region or not, because trace selection needs to know this determination. For a
16K-entry BIT and a trace length of 32 instructions, a BIT entry is 4 bytes long: a tag (16 bits), a
flag indicating embeddable or not (1 bit), the dynamic region size (5 bits), and the re-convergent
point in the form of an offset from the start of the region (10 bits is reasonable).

3.2  FGCI Trace Selection

When a forward conditional branch is encountered during trace selection, the branch PC is used to
access FGCI information from the BIT. If the information does not exist, a BIT miss handler ini-
tiates the FGCI-algorithm and trace construction stalls until the handler completes.

If the BIT indicates the branch is a candidate for FGCI, and the current trace length plus the
dynamic region size of the branch does not exceed the maximum trace length constraint, then the
following actions are performed.

1. The cumulative trace length is incremented by the dynamic region size.

2. Incrementing of the cumulative trace length is halted while a given path through the
embeddable region (as dictated by branch prediction) is added to the trace.

3. Incrementing the cumulative trace length resumes when the re-convergent point (from the BIT)
is reached.

Managing the cumulative trace length in this way guarantees paths shorter than the longest
path through the embeddable region are effectively “padded” to the longest path length.

If the current trace length plus the dynamic region size of the branch exceeds the maximum
trace length constraint, then the current trace is terminated before the branch. Deferring the branch
to the next trace ensures all potential FGCI is exposed.

4.  Trace Selection and Heuristics for CGCI

Trace selection and the trace processor frontend coordinate to exploit CGCI. Trace selection delin-
eates traces at key global re-convergent points. When a misprediction is detected, the frontend
chooses one of the points (based on heuristics), if there are any in the window, to serve as the trace-
level re-convergent point for recovery.

4.1  CGCI Trace Selection

In this paper, we consider only two types of global re-convergent points. These are the targets of
return instructions and the not-taken targets of backward branches, shown with black dots in
Figure 8(a) and Figure 8(b), respectively.



The default trace selection algorithm terminates traces at the maximum trace length or at any
indirect branch instruction; indirect branches include jump indirect, call indirect, and return
instructions. Therefore, default trace selection already ensures trace-level re-convergence at the
exits of functions, i.e. return targets.

An additional CGCI trace selection constraint, calledntb, terminates traces at predictednot-
takenbackward branches. This ensures trace-level re-convergence at the exits of loops.

Figure 8: Global re-convergent points.

4.2  CGCI Heuristics

Trace selection only ensures trace-level re-convergence at easily identified, global re-convergent
points. When a branch misprediction is detected, one from possibly many such points in the win-
dow must be chosen as the trace-level re-convergent point used for recovery actions. Only two
CGCI heuristics are considered.

• RET: The frontend locates the nearest trace that ends in areturn instruction. The immediately
subsequent trace is assumed to be the first control independent trace.

• MLB-RET: If the mispredicted branch is a backward branch, we assume it is a loop branch as
depicted in Figure 8(b). Based on this assumption, the frontend locates the nearest trace whose
starting PC matches the not-taken target of the branch; it is likely the correct re-convergent
point. This heuristic,MispredictedLoop Branch (MLB), is always considered first. However, if
the mispredicted branch is not a backward branch, then theRET heuristic is applied.

TheRETheuristic is designed to cover arbitrary mispredictions within a function since control
flow re-converges at the function exit. However, due to nested functions, there may be any number
of other return instructions before the intended function exit. Choosing the nearest return instruc-
tion, therefore, is only a guess. Often, the result is better than intended — when the chosen return
is closer than the function exit, but still control independent with respect to the misprediction.
Other times, however, the chosen return is on the incorrect control dependent path.

The MLB heuristic (ofMLB-RET) is designed to specifically and accurately cover mispre-
dicted loop branches, a substantial source of branch mispredictions (refer to Table 5). Loops with
small bodies and a small but unpredictable number of iterations fall in this category, and there are
often many control independent traces after the mispredicted loop branch.

TheRETheuristic requires only default trace selection, whereasMLB-RETrequires, in addi-
tion, thentb selection constraint to expose loop exits.
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5.  Experimental Setup

A detailed, fully-execution driven trace processor simulator is used to evaluate control indepen-
dence. The simulator was developed using thesimplescalar toolset (Burger et al. 1996).

Table 1 summarizes the major parameters in the trace processor configuration; a comprehen-
sive simulator description can be found in the corresponding thesis (Rotenberg, 1999b). Several of
the parameters are worth discussing. First, a very large trace predictor is used to achieve high over-
all branch prediction accuracies (which are reported in the next section). Also, the frontend and
execution pipelines are not heavily-pipelined. Together the accurate trace predictor and small
branch misprediction penalty potentially skew results in the conservative direction (i.e. less benefit
from control independence). However, also note that 16 PEs are simulated in anticipation of future
large instruction windows, and for which control independence techniques are likely to be more
relevant. The maximum trace length (and hence PE window size) is 32 instructions.

The SPEC95 integer benchmarks, shown in Table 2, were simulated to completion. Table foot-
notes indicate non-fundamental changes made to benchmarks or input datasets in order to keep
instruction count between 100 and 200 million instructions for a complete run.

TABLE 1: Trace processor configuration.

frontend latency 2 cycles (fetch + dispatch)

trace predictor (hybrid)
216-entry path-based pred.: 8 traces hist.

216-entry simple pred.: 1 trace hist.

trace cache
size/assoc/repl = 128kB/4-way/LRU

trace line size = 32 instructions

instruction cache

2-way interleaved, 1 basic block/cycle

size/assoc/repl = 64kB/4-way/LRU

line size = 16 instructions

miss penalty = 12 cycles

branch predictor 16K-entry tagless BTB, 2-bit counters

BIT 8K-entry, 4-way assoc.

trace construction b/w 1 port to instr. cache, branch pred., BIT

processing elements 16 PEs, 4-way issue per PE

global result buses
8 buses, up to 4 can be used by 1 PE

extra 1-cycle result bypass latency

cache buses 8 buses, up to 4 can be used by 1 PE

data cache
size/assoc/repl = 64kB/4-way/LRU

line size = 64 bytes

miss penalty = 14 cycles

execution latencies

address generation = 1 cycle

memory access = 2 cycles (hit)

integer ALU ops = 1 cycle

complex ops = MIPS R10000 latencies

load re-issue penalty = 1 cycle (snoop lat.)



6.  Results

Two sets of experiments are presented. The first set focuses on the impact of FGCI and CGCItrace
selectionin a trace processor without control independence mechanisms. This is required to isolate
the effects of trace selection on trace cache performance, trace predictor performance, and PE uti-
lization. The second set evaluates the performance ofcontrol independence.

6.1  Performance Impact of Trace Selection

Default trace selection terminates traces at a maximum length of 32 instructions or at any jump
indirect, call indirect, or return instruction. Thentb trace selection terminates traces at predicted
not-taken backward branches, andfg denotes FGCI trace selection. The selection-only experi-
ments are prefixed withbaseto indicate no control independence, and are followed by the trace
selection algorithm(s) used. Default trace selection is always in effect and, therefore, is not explic-
itly specified. The four experiments are:base, base(ntb), base(fg), andbase(fg,ntb).

Performance results in instructions per cycle (IPC) are tabulated in Table 3. Two conclusions
can be drawn from Table 3. First, our base trace processor aggressively exploits ILP. Performance
for thebasemodel ranges from 2 to 7 IPC, with a harmonic mean of 4.3 IPC. Onlycompressand
go have IPCs lower than 4 (2.0 and 3.2, respectively) andgcc performs above average with 4.4
IPC. Second, additional selection constraints (fg and/or ntb) tend to affect basic performance

TABLE 2: Benchmarks.

benchmark
input dataset dynamic

instr. countspec dir. command line arguments other relevant files

compressa

a Benchmark source code modified to make only a single compress/decompress pass.

- 400000 e 2231 - 104 million

gcc ref -O3 genrecog.i -o genrecog.s - 117 million

go - 9 9 - 133 million

jpegb

b Benchmark source code modified to hardwire in the following (otherwise verbose) arguments: -
image_file vigo.ppm -compression.quality 15 -compression.optimize_coding 0 -compres-
sion.smoothing_factor 90 -difference.image 1 -difference.x_stride 10 -difference.y_stride 10 -ver-
bose 1 -GO.findoptcomp

train vigo.ppm - 166 million

li test test.lsp (queens 7) - 202 million

m88ksim train -c < ctl.in dcrand.big 120 million

perl train scrabble.pl < scrabble.inc

c Two more words were added to “scrabble.in”. The file now contains {zed, veil, vanity,abdome,
evilds}.

dictionary 108 million

vortex train vortex.ind

d The following entries in “vortex.in” were modified: part_count=100, inner_loop=1, lookups=20,
deletes=20, stuff_parts=10, pct_newparts=10, pct_lookups=10, pct_deletes=10, pct_stuffparts=10.

persons.250, bendian.wnv,
bendian.rnv

101 million



adversely. The harmonic mean of performance drops from 4.3 IPC down to 4.2 IPC for both
base(ntb) andbase(fg), and down to 4.1 IPC forbase(fg,ntb).

To help understand why additional selection constraints degrade performance, Table 4 shows
the impact of selection on trace length, trace mispredictions, and trace cache misses (the latter two
are given as misses per 1000 instructions and as a rate). Additional selection constraints always
decreases average trace length and this almost always increases trace mispredictions per 1000
instructions. On average,base(ntb), base(fg), andbase(fg,ntb)reduce average trace length by 2.1,
1.5, and 3.5 instructions, respectively, compared to thebasemodel. This results in an average of
0.2, 0.3, and 0.5 additional trace mispredictions per 1000 instructions forbase(ntb), base(fg), and
base(fg,ntb), respectively. The trace predictor uses a path history of traces, and reducing the
lengths of traces effectively reduces the amount of implicit branch history. Also,synchronizing
trace selection among many disjoint paths — in nested hammocks (fg) or after exiting a loop (ntb)
— reduces the number of unique traces significantly. Yet it is this uniqueness that provides a very
distinct context for making predictions (Rotenberg et al. 1999c).

Reducing the average trace length also results in a waste of issue buffers in the PEs, effectively
making the instruction window smaller. The only positive effect is a reduction in the number of
trace cache misses — on average, 0.1, 0.2, and 0.3 fewer misses per 1000 instructions for
base(ntb), base(fg), andbase(fg,ntb), respectively — but the benefit is generally overshadowed by
costlier trace mispredictions.

The relative performance ofbase(ntb), base(fg), and base(fg,ntb)with respect tobase is
graphed in Figure 9. Thebase(ntb)model improves performance slightly for six of the eight
benchmarks, but forcompressand li , performance degrades by 5% and 10%, respectively. The
effect is pronounced inli because trace length drops by 25%, double what other benchmarks expe-
rience. Thebase(fg)model degrades performance between 2% and 3% for half of the benchmarks.
In general,base(fg,ntb)performs similarly to theworse of its two components,base(fg)and
base(ntb).

TABLE 3:  IPC without control independence.

base base(ntb) base(fg) base(fg,ntb)

compress 2.02 1.92 1.96 1.92
gcc 4.44 4.51 4.34 4.36
go 3.17 3.20 3.07 3.10

jpeg 7.12 7.24 6.96 6.96
li 4.72 4.31 4.72 4.34

m88ksim 5.66 5.67 5.61 5.54
perl 6.94 7.07 6.92 6.90

vortex 5.85 5.86 5.80 5.79
Harmonic Mean 4.26 4.18 4.17 4.11



Figure 9: Performance impact of trace selection.

TABLE 4: Impact of trace selection on trace length, trace mispredictions, and trace cache misses.

compress gcc go jpeg li m88ksim perl vortex

base

avg. trace length 24.9 24.0 27.2 31.1 19.7 24.0 21.2 25.6

trace misp. rate
10.6

(26.3%)
4.2

(10.1%)
7.3

(19.9%)
3.1

(9.5%)
4.8

(9.4%)
1.2

(3.0%)
1.6

(3.4%)
0.9

(2.3%)

trace $ miss rate
0.0

(0.0%)
4.7

(11.2%)
10.2

(27.7%)
0.3

(1.1%)
0.0

(0.0%)
0.0

(0.1%)
0.2

(0.4%)
1.1

(2.7%)

base(ntb)

avg. trace length 21.6 21.6 24.4 30.1 14.7 23.4 20.2 24.9

trace misp. rate
11.2

(24.2%)
4.3

(9.3%)
7.4

(18.1%)
3.0

(9.0%)
6.0

(8.8%)
1.2

(2.8%)
1.5

(3.0%)
0.9

(2.2%)

trace $ miss rate
0.0

(0.0%)
4.1

(8.8%)
9.7

(23.7%)
0.3

(0.9%)
0.0

(0.0%)
0.0

(0.1%)
0.3

(0.6%)
1.0

(2.4%)

base(fg)

avg. trace length 24.6 21.8 23.9 28.9 18.9 21.8 21.0 24.6

trace misp. rate
10.8

(26.5%)
4.4

(9.7%)
8.1

(19.2%)
3.8

(11.0%)
4.9

(9.2%)
1.4

(3.0%)
1.6

(3.4%)
0.9

(2.2%)

trace $ miss rate
0.0

(0.0%)
4.0

(8.8%)
9.4

(22.4%)
0.2

(0.7%)
0.0

(0.0%)
0.0

(0.0%)
0.1

(0.1%)
1.1

(2.6%)

base(fg,ntb)

avg. trace length 21.2 19.7 21.6 28.1 14.2 21.3 19.9 23.8

trace misp. rate
10.9

(23.2%)
4.7

(9.2%)
8.3

(17.9%)
3.9

(10.8%)
6.0

(8.6%)
1.5

(3.1%)
1.6

(3.2%)
1.0

(2.3%)

trace $ miss rate
0.0

(0.0%)
3.6

(7.2%)
9.0

(19.4%)
0.2

(0.7%)
0.0

(0.0%)
0.0

(0.1%)
0.1

(0.1%)
1.0

(2.4%)
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6.2  Performance of Control Independence

In this section, we evaluate the performance of four control independence models:

• RET: coarse-grain only, using theRET heuristic.

• MLB-RET: coarse-grain only, using theMLB-RET heuristic.

• FG: fine-grain only.

• FG + MLB-RET: fine-grain and coarse-grain using theMLB-RET heuristic.

Figure 10 (performance improvement overbase) shows that control independence improves
performance substantially. Coarse-grain control independence performs uniformly well across the
benchmarks, with the exception ofjpeg, which demonstrates mostly fine-grain control indepen-
dence, andm88ksimandvortex, which have branch misprediction rates less than 1%. TheRET
model improves performance by about 5% forgcc, 10% for li andperl, and about 20% forcom-
pressandgo. Going fromRETto MLB-RETimproves performance moderately forgccandgo, due
to greater misprediction coverage and establishing more precise control independent points for
backward branches. The improvement is perhaps moderate due to overlapping coverage between
the two kinds of global re-convergent points. Forli , MLB-RETdrops performance with respect to
RET, an artifact ofntb trace selection.

Figure 10: Performance of control independence.
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To give insight into the performance of FGCI, conditional branch statistics are shown in
Table 5. Branches are classified into those that can be captured by FGCI, all other forward
branches, and backward branches. FGCI branches are further divided into those whose regions fit
(≤ 32) or do not fit (>32) in a trace; a trace length of 32 can capture almost all FGCI-type branches.
The fraction of dynamic branches and mispredictions are given for each class.

FGCI branches account for 23% to 41% of all branches, and over 60% of all mispredictions, in
compressand jpeg. This explains why the modelFG performs very well on these benchmarks,
namely a 20% to 25% performance improvement. FGCI branches also contribute over 60% of
mispredictions inm88ksim. FG outperforms other control independence models form88ksim,
however, the benchmark has very few mispredictions in absolute terms andFG improves perfor-
mance by only 5%.

FGCI branches account for 24% of all mispredictions ingo, yet FG actually degrades perfor-
mance by less than 1%. Looking further into the misprediction behavior ofgo, we have noticed
that FGCI has large potential in some frequently executed code (e.g. the “addlist” function), but
that neighboring mispredictions not covered by FGCI nullify this potential; combined with the
minor adverse effects offg trace selection, the result is no gain. In contrast, theMLB-RETmodel
performs well by capturingclusters of mispredictions in these same code regions.

Returning to Table 5,gcc, go, jpeg, li, andvortexhave large FGCI regions (13 to 40 instruc-
tions) with many conditional branches enclosed (3 to 4). The average dynamic region size of FGCI
branches is from 1 to 8 instructions smaller than the corresponding static code region.

Except form88ksim, backward branches account for a large fraction of mispredictions: 20%
for four of the benchmarks, over 30% forperl andvortex, and 60% forli . Unfortunately forli ,
applyingntb trace selection — so theMLB-RETheuristic can cover these mispredictions — also
worsens the prediction accuracy of the backward branches. WhileMLB-RET performs only
slightly better thanbase,it improves performance by 10% overbase(ntb)— i.e. CGCI is being
exploited, if only to break even withbase.

In summary, using FGCI and CGCI techniques together achieves the best performance
improvement on average, about 10% (FG + MLB-RET). Clearly, some techniques work better than

TABLE 5: Conditional branch statistics.

comp gcc go jpeg li m88k perl vortex

F
G

C
I

br
an

ch
es

≤ 32 frac. br. 40.8% 21.4% 24.5% 22.5% 10.0% 33.1% 17.0% 37.0%
frac. misp. 63.1% 20.3% 24.4% 60.6% 3.0% 65.0% 18.2% 24.2%

> 32
frac. br. 0.1% 1.9% 2.6% 2.0% 0.0% 1.0% 0.0% 0.1%

frac. misp. 0.0% 1.3% 2.7% 1.9% 0.0% 1.6% 0.0% 0.5%
misp. rate 14.6% 2.8% 8.7% 14.8% 1.0% 1.8% 1.3% 0.5%

dyn. region size 4.3 11.3 13.8 31.9 13.2 5.5 6.6 10.3
stat. region size 5.7 12.9 16.4 40.2 16.3 7.6 8.1 13.7

# cond. br. in reg. 1.6 3.2 2.6 4.3 3.8 1.6 1.9 2.9

other
forward
branches

frac. br. 23.6% 58.3% 52.8% 24.8% 63.2% 38.5% 72.8% 53.0%
frac. misp. 17.8% 55.8% 51.8% 15.8% 36.1% 29.1% 46.2% 41.9%
misp. rate 7.1% 2.9% 8.5% 3.7% 1.9% 0.7% 0.8% 0.5%

backward
branches

frac. br. 35.5% 18.4% 20.1% 50.7% 26.7% 27.4% 10.2% 9.9%
frac. misp. 19.1% 22.6% 21.1% 21.7% 60.9% 4.3% 35.6% 33.4%
misp. rate 5.1% 3.8% 9.1% 2.5% 7.4% 0.1% 4.2% 2.3%

overall branch misp. rate 9.4% 3.1% 8.7% 5.8% 3.3% 0.9% 1.2% 0.7%
 branch misp./1000 instr. 13.5 4.7 10.4 3.8 5.1 1.2 1.6 0.8



others depending on the benchmark, perhaps suggesting the need for adaptive trace selection.
Using the best-performing technique for each benchmark, control independence achieves an aver-
age improvement of 13%. For benchmarks with significant misprediction rates (more than 2
mispredictions per 1000 instructions), the average improvement is 17%.

7.  Summary

Control independence is a promising technique for overcoming the branch misprediction bottle-
neck. Trace processors exploit hierarchy to manage the complexity of implementing control inde-
pendence, while maintaining the performance advantages of a contiguous instruction window and
a relatively accurate single flow-of-control.

The ideas presented in this paper can be summarized as follows.

• A primary source of control independence complexity is the insertion and removal of instruc-
tions at arbitrary points in the window. Fortunately, the hierarchical instruction window of trace
processors accommodates flexible control flow management. In the case of fine-grain control
independence (FGCI), control flow recovery is localized within a single PE. In the case of
coarse-grain control independence (CGCI), control flow recovery involves multiple PEs, but
treating traces as the fundamental unit of control flow results in efficient recovery actions.

• Traces facilitate flexible control flow management but introduce a new problem: trace-level re-
convergence is not guaranteed despite re-convergence at the instruction-level. Novel FGCI and
CGCI trace selection techniques were developed for ensuring trace-level re-convergence.

• Trace processors exploit a variety of data speculation techniques and, therefore, already incor-
porate high-performance, selective data recovery mechanisms. These mechanisms are easily
leveraged to selectively re-execute incorrect-data dependent, control independent instructions.

Control independence improves trace processor performance from 2% to 25%, and 13% on
average. Exploration of other, more sophisticated CGCI heuristics holds the potential for even
larger performance gains.
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