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Abstract
Register integration (or simply integration) is a mechanism for the direct reuse of previously computed
results. Integration uses data-dependence relationships to test for and establish reusability. In this paper, we
use integration to implement squash reuse, the salvaging of instruction results that were needlessly discarded
during the course of sequential recovery from a control- or data- mis-speculation.
In integration, the results of squashed instructions remain in the physical register file past mis-speculation
recovery. As the processor re-traces portions of the squashed path, an auxiliary table is used to search the
physical register file for the registers belonging to the corresponding squashed instances of re-traced instruc-
tions. If found, a squashed register is re-validated by a simple update of the rename table. The integrating re-
traced instruction completes instantly and bypasses the out-of-order core. Integration reduces contention for
execution resources, collapses dependent chains of operations and accelerates branch resolution. It achieves
this using only rename-table manipulations; without reading or writing the physical registers themselves.
We present a simplified implementation of register integration that uses explicit states to manage physical
registers and in-order pre-retirement re-execution (much simpler than general out-of-order execution) to
guarantee integration correctness. We also introduce a simple mechanism that learns from past integration
mistakes to avoid similar mistakes in the future. These components contribute to a design that is simple,
high-performing, easy to pipeline, and which has minimal impact on the rest of the microarchitecture.
Our preliminary evaluation shows that a minimal integration configuration can provide performance
improvements of up to 5% when applied to next-generation microarchitectures. Integration also reduces the
amount of wasteful speculation in the machine, cutting the number of instructions executed by up to 17%
and the number of instructions fetched along mis-speculated paths by as much as 6%.

1  Introduction

Modern microprocessors rely heavily onspeculative execution. Sequential processors (ones that execute
sequential programs) speculate on both control and data, executing instructions before all of their input
dependences are known with certainty. Successful speculation improves performance by sparing the spec-
ulated instructions the delay of execution context verification. On the other hand, unsuccessful speculation,
or mis-speculation, hurts performance by forcing the processor torecoverto some prior non-speculative
state and start over. This paper presentsregister integration, a mechanism for overcoming an inherent inef-
ficiency in conventional sequential mis-speculation recovery.

The inefficiency in question is the result of a basic antagonistic combination found in sequential programs.
While a sequential program is composed of manylocally independent computations, thestateof the pro-
gram is only defined sequentially at dynamic instruction boundaries. Since mis-speculation recovery is
defined in terms of this sequential state, a mis-speculation in one computation inadvertently but necessarily
causes valid work from sequentially younger computations to be aborted, orsquashed, and re-executed.
Register integration can performsquash reuse[3, 19, 21], salvaging the results of squashed computations
that are control- and data- independent of the particular mis-speculation event that led to their squashing.
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Many processors implement speculation using a level of indirection that maps the architectural register
name space to a larger physical register storage space. The larger physical space allows multiple versions
of each architectural location (all but one of which is speculative) to simultaneously exist. Successful spec-
ulation involves the promotion of newer mappings to non-speculative status. Mis-speculation recovery
restores prior mappings and recycles the speculative storage. Integration is motivated by the observation
that only restoration of previous mappings is required for correct recovery. If the speculative values are left
intact past a recovery event, then should the processor re-trace part of the squashed path and discover that
some of the instructions were useful after all, only the corresponding mappings will need to be restored;
the values themselves will already exist and will not need to be re-computed.

The matching of squashed results with re-traced instructions is accomplished using a second mapping into
the physical register file, theIntegration Table (IT). The IT differs from the sequential mapping (map table)
in a fundamental way. The map table describes the contents of the physical registers in a transient, sequen-
tially-dependent way from the point of view of the architectural registers. In contrast, the IT describes the
contents of the physical registers in a persistent, order-independent way that reflects the operations and
dataflow relationships used to create the values. As an instruction is register-renamed, the IT is used to
search the physical register file for a physical register that holds the result of a previous squashed instance
of the same instruction. If a register is found such that its creating instruction instance had the same physi-
cal register inputs as the currently renamed instance, then the currently-renamed instruction is “recog-
nized” as having been previously executed and squashed. The current instructionintegratesthe squashed
result by setting the sequential mapping for its output to point to the physical register allocated during the
initial (squashed) execution. Theintegrating instructionis complete for all intents and purposes; it can
commit as soon as the retirement algorithm allows.

Integration has several advantages. It reduces consumption of and contention for execution resources. It
also collapses data-dependent chains of instructions: a chain of data-dependent instructions cannot be exe-
cuted in a single cycle, but a completed chain of data-dependent instructions may be integrated in a single
cycle. Integrating branch instructions are resolved immediately, and should these be mispredicted branches
the misprediction penalty and subsequent demand on the fetch engine are also reduced. From an engineer-
ing standpoint, integration is simple to implement. It requires no additional data paths to either read or
write physical register values and in general involves modifications only to the register renaming and
retirement stages; the rest of the pipeline is oblivious to its existence.

Our experiments show that a realistic integration configuration can achieve speedups of up to 6% on a rep-
resentative next-generation microarchitecture. Integration also reduces the level of wasteful speculation in
a processor, cutting the number of instructions fetched along mis-speculated paths by as much as 6% and
the number of instructions executed by 17%.

We initially conceived of register integration as a mechanism for allowing a master thread to directly use
results pre-executed on its behalf by “helper” threads [18, 20]. The squash reuse application became evi-
dent during the initial simulator implementation. Since that first exposition, we have gained much experi-
ence with integration—in both squash and pre-execution reuse capacities—and have simplified and
improved its (simulated) implementation in several ways. The implementation presented here represents
the cumulative sum of our experience and is, in many places, quite different than its predecessor design.

The rest of the paper is organized as follows. The next section presents the basic integration algorithm and
argues for its correctness. Section 3 addresses implementation issues. In section 4 we evaluate integration
using cycle-level simulation. Section 5 discusses related work. Section 6 presents our conclusions.

2  Register Integration

During the course of processing, the program’s dataflow graph, in the form of the results of its individual
instructions, is stored in the physical register file. At any point in the program, the “active” vertices
(results) of this graph are available through a set of mappings that maps architectural register names to
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physical register locations and their values. New portions of the dataflow graph can only be attached to
these “active” vertices. As each instruction is added to the graph, a physical register to hold its value is
allocated and mapped to the architectural output. Each instruction is annotated with both the physical reg-
ister holding its value and the prior physical register mapping of the same architectural location. Recovery
entails backtracking over a portion of the program, restoring the previous mapping of each instruction’s
output while recycling the storage for the squashed result.

Integration exploits the observation that mis-speculation recovery is obligated only to restore some prior
sequential mapping into the physical register file. That the results associated with the discarded mappings
are also recycled during recovery is only an implementation convenience; leaving them intact past the mis-
speculation does not impact correctness (of course, they must be recycled eventually lest the processor
“leak” away all physical registers). Assuming the results are kept, let us consider the point immediately
after the completion of a recovery sequence. Just at this point, all squashed instructions are, in principle,
still “attached” to the current state (dependence graph) of the program as defined by the register mapping.
The inputs of the oldest squashed instructions are found in this mapping. The fact that the inputs are valid
validates the outputs, which are themselves inputs of younger squashed instructions, and so on. Integration
is the process of transitively recognizing this validity, instruction by instruction.

For every instruction renamed by the processor, integration logic looks for a physical register associated
with a squashed instance of that instruction and in particular, a squashed instance that executed with the
same physical register inputs as the current instance is about to use. To facilitate this search, integration
relies on theIntegration Table (IT), an auxiliary structure that indexes and tags physical registers using the
PC—which represents the opcode and any immediate inputs in the instruction—and input physical regis-
ters of the creating instructions. If a physical register matching this description is found in the IT, we “un-
squash” it by simply attaching it to the current instruction and re-entering it into the sequential map table.
Attaching a squashed physical register to an active instruction implements reuse. Entering the physical reg-
ister into the map table re-validates the input mappings of squashed results that depend on it, allowing
them to be subsequently integrated. This same mechanism naturally avoids the reuse of results whose data
inputs have been invalidated. As the processor sequences instructions from paths different than the
squashed one, the results of these instructions create mappings to new physical registers not found in the
squashed dataflow graph. These new mappings effectively “detach” those portions of the squashed data-
flow graph that depend on the corresponding architectural name, preventing them from being integrated.

An example will hopefully clarify this process. Figure 1 shows six execution snapshots of a short program
fragment that uses two register variables:r1 andr2. Each snapshot shows the program after the renaming
of the last instruction, which is in bold. Each instruction is shown both in raw (logical register) and
renamed (physical register) forms. To the right of the program is the state of the register map table. The
register map table is not really shown in snapshot form, rather each line in the map table corresponds to its
state after the renaming of the corresponding instruction on its left. The current state of the map table is
simply the last entry. Finally, on the right of each snapshot is the current state of the IT. For this example,
we use a 6-entry fully associative IT in which we create and evict entries in circular fashion. Each IT entry
contains four fields:PC is the PC of the corresponding instruction instance,I1 is the input physical register,
O is the output physical register (the one indexed by the entry and which we hope to integrate), andS is the
state of that register. Each physical register can be in one of two states:active (A)or squashed (S). We use
a single input physical register per entry to allow the figure to fit on a single page and because each instruc-
tion in our example has a single register input. A real IT would have two input register fields,I1 andI2.

The program undergoes three processing phases. In the first phase (snapshots #1 and #2), instructionsA1
throughA7are renamed and executed. For each new instruction, a new physical register is allocated to hold
its output value and an IT entry is created indexing this physical register. For instance, in snapshot #1, an
IT entry is created for instruction A4. The output physical register is the newly allocatedp2 (markers #1a).
The input physical register isp0, the previous mapping ofr1 (markers #1b). IT entries are created in the
“active” (A) state indicating that the current entry refers to an in-flight instruction. The second phase takes
place after all the instructions have completed execution, when a branch misprediction is detected at
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instructionA3 (snapshot #3). At this point, instructionsA4 throughA7 are squashed and the map table is
recovered to its postA3 state. In addition, as part of this process, we also transition the IT entries corre-
sponding to the squashed instructions to the “squashed” (S) state. Integration comes into play in the final
phase. Having recovered from the misprediction, the processor resumes fetching at the reconvergent point
beginning atA5. We follow the renaming and potential integration of each instruction.

Intuitively, the retraced instance ofA5 shouldbe integrated since removingA4 did not change the value of
r2. Indeed, whenA5 is renamed for a second time (snapshot #4)r2 is mapped top1, the same mapping it
had duringA5’s original, squashed execution. Properly, the IT contains an entry for an instance ofA5 with
input physical registerp1. By comparing PC/input-register tuples from the dynamic instruction and map
table with the corresponding IT tuples (markers #4a), we determine that integration can take place. The act
itself consists of setting the output mapping ofA5 to the physical register originally allocated for it,p3
(marker #4b).p3 is also entered as the current mapping ofr2 in the map table (marker #4c). The IT entry is
returned to the “active” (A) state to prevent the physical register from being integrated by another instruc-
tion (marker #4d).

In contrast withA5, the retraced instance ofA6 shouldnot be integrated. The original squashed instance
read a value written byA4. However,A4 was squashed and not retraced meaning the old value ofA6 is

FIGURE 1. A Working Example of Integration. The three phase processing of a series of instructions.
Phase I, initial execution and the creation of IT entries, is shown in snapshots #1 and #2. Phase II, recovery
from mis-speculation and result squashing is shown in snapshot #3. Phase III, retracing over the squashed
path and the integration of valid results is shown in snapshots #4, #5, and #6.

Dynamic Instruction Stream Map IT
PC instruction renamed r1 r2 PC I1 O S
A1 add r1,r0,#0 add p0,- p0 p7 A7 p3 p5 A
A2 add r2,r0,#1 add p1,- p0 p1 A2 - p1 A
A3 beqz r1, A5 beqz -,p0 p0 p1 A3 p0 - A
A4 add r1,r1,#1 add p2,p0 p2 p1 A4 p0 p2 A
A5 add r2,r2,#2 add p3,p1 p2 p3 A5 p1 p3 A
A6 add r1,r1,#3 add p4,p2 p4 p3 A6 p2 p4 A
A7 add r2,r2,#4 add p5,p3 p4 p5

Dynamic Instruction Stream Map IT
PC instruction renamed r1 r2 PC I1 O S
A1 add r1,r0,#0 add p0,- p0 p7 A7 p3 p5 S
A2 add r2,r0,#1 add p1,- p0 p1 A8 p4 p6 S
A3 beqz r1, A5 beqz -,p0 p0 p1 A3 p0 - A

A4 p0 p2 S
A5 p1 p3 S
A6 p2 p4 S

Dynamic Instruction Stream Map IT
PC instruction renamed r1 r2 PC I1 O S
A1 add r1,r0,#0 add p0,- p0 p7 A7 p3 p5 S
A2 add r2,r0,#1 add p1,- p0 p1 A8 p4 p6 S
A3 beqz r1, A5 beqz -,p0 p0 p1 A3 p0 - A
A5 add r2,r2,#2 add p3,p1 p0 p3 A4 p0 p2 S

A5 p1 p3 A
A6 p2 p4 S

Dynamic Instruction Stream Map IT
PC instruction renamed r1 r2 PC I1 O S
A1 add r1,r0,#0 add p0,- p0 p7 A7 p3 p5 S
A2 add r2,r0,#1 add p1,- p0 p1 A8 p4 p6 S
A3 beqz r1, A5 beqz -,p0 p0 p1 A6 p0 p9 A
A5 add r2,r2,#2 add p3,p1 p0 p3 A4 p0 p2 S
A6 add r1,r1,#3 add p9,p0 p9 p3 A5 p1 p3 A

A6 p2 p4 S

Dynamic Instruction Stream Map IT
PC instruction renamed r1 r2 PC I1 O S
A1 add r1,r0,#0 add p0,- p0 p7 A7 p3 p5 A
A2 add r2,r0,#1 add p1,- p0 p1 A8 p4 p6 S
A3 beqz r1, A5 beqz -,p0 p0 p1 A6 p0 p9 A
A5 add r2,r2,#2 add p3,p1 p0 p3 A4 p0 p2 S
A6 add r1,r1,#3 add p9,p0 p9 p3 A5 p1 p3 A
A7 add r2,r2,#4 add p5,p3 p9 p5 A6 p2 p4 S

Dynamic Instruction Stream Map IT
PC instruction renamed r1 r2 PC I1 O S
A1 add r1,r0,#0 add p0,- p0 p7 A1 - p0 A
A2 add r2,r0,#1 add p1,- p0 p1 A2 - p1 A
A3 beqz r1, A5 beqz -,p0 p0 p1 A3 p0 - A
A4 add r1,r1,#1 add p2,p0 p2 p1 A4 p0 p2 A
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invalid in this new context. This invalidation is naturally captured by the IT. WhenA6 is renamed for the
second time (snapshot #5), it finds its inputr1 mapped to physical registerp0. However, no entry forA6
with an input ofp0 is found in the IT. TheA6entry hasp2 (the register allocated byA4) as its input (marker
#5a). Since integration is impossible in this case, a new physical register,p9, is allocated to the current
instance ofA6, and a new IT entry is created for this instance (marker #5b). The old entry forA6 (marker
#5a) will remain in the IT until it is evicted.

Recall, when we integratedA5, we entered the integrated output (p3) into the map table. That action set the
stage for the integration ofA7, an instruction that depends onA5. The squashed version ofA7was executed
with input registerp3, the output of the squashedA5. WhenA7 is retraced (snapshot #6), its input is again
p3 thanks to the integration ofA5. A7 integratesp5 in exactly the same manner thatA5 integratedp3.

In a superscalar processor, the integration decision on these instructions can be made in parallel. How this
is done is the subject of the next section. However, the example demonstrated the three basic cases for
superscalar integration: basic integration (A5), basic non-integration (A6), and the integration of an instruc-
tion that depends on an integrating instruction (A7).

3  Implementation

We now discuss the implementation of integration-based squash reuse by describing the necessary modifi-
cations to a representative base microarchitecture. An integration implementation comprises three compo-
nents: 1) theintegration engine, 2) theintegration application manager, and 3) theintegration verifier.

The integration engineis the heart of register integration. It consists of the physical register representation
that fundamentally enables integration and the logic that implements the integration operation as a part of
register renaming. Modulo some fine details, there is acanonicalimplementation of the integration engine
which follows directly from the basic definition of the integration operation itself.

The integration application manageris responsible for managing physical registers in a way that fits the
application. The application manager implements the policies that govern which physical registers become
integration-eligible and when and how this transition takes place, what happens to integrating instructions,
and how un-integrated physical registers are eventually recycled back to the free list. Per its name, the
implementation of this component depends on the particular integration application. Squash reuse requires
a different set of policies than pre-execution reuse. However, even for a given application there are many
possible register management policies and many implementations of these policies.

The primary function of theintegration verifieris to deal withmis-integrations, or incorrect integrations.
The primary mis-integration scenario involves loads. An integrating instruction can be thought of as hav-
ing two executions: aphysical executionwhere the instruction is actually executed and then squashed, and
anarchitectural executionin which the integrating instruction is supposed to execute but doesn’t actually
do so. For instructions with only register inputs, integration is perfectly safe. A valid combination of oper-
ation and input values (denoted by PC and physical registers) guarantees that the result of the physical exe-
cution is identical to that which would be produced in the architectural execution, allowing the former to
be substituted for the latter. Loads are the exception. Older stores act as implicit inputs (via memory) to
loads. Being purely a register discipline, register integration cannot track these dependences. The integra-
tion of a particular load is not guaranteed to be safe. A conflicting store may exist along the architectural
execution path that was not present in the physical execution path, or vice versa. The integration of a load
in the presence of such store differences between its physical and architectural paths produces an incorrect
execution, which we call amis-integration. A second, much rarer mis-integration scenario arises from the
presence of stale IT entries (discussed in Section 3.4.1). It is the job of the integration verifier to detect mis-
integrations, and prevent the corresponding instructions from retiring.

Like the application manager, the verifier is not fundamentally tied to the integration operation itself. Sev-
eral verifier implementations are possible. The verifier may avoid mis-integrationsa priori by tracking
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writes to addresses of integration eligible loads [19, 21]. Alternatively, a verifier implementation may
allow mis-integrations to take place, detect them post fact via re-execution, and reverse them in some way.
The division of labor between the application manager and the integration verifier is somewhat flexible.
One instance of this fluidity is the handling of stale IT entries. We can implement a register management
policy that will recursively invalidate and reclaim IT entries when they become stale. Alternatively, we can
permit the integration of stale physical registers, and allow the verifier to catch the resulting mis-integra-
tions. The implementation of verification is discussed in greater detail in section 3.4.

Figure 2 shows a dynamically scheduled, superscalar pipeline modified to include register integration. We
will refer to this figure for the rest of this section. The additions and modifications required to support reg-
ister integration in general and squash reuse in particular are shown in bold. The integration engine is cen-
tered around the register renaming stage and includes the integration table (IT) and integration circuit
(added to register renaming logic). The integration verifier is inserted immediately prior to the retirement
stage. The integration application manager is not explicitly shown, it is embodied in a set of rules and pol-
icies that use the other two components to implement squash reuse.

3.1  Base Microarchitecture

In its current formulation, integration is not implementable in all microarchitectures. Integration requires
that the base microarchitecture allow speculative results to remain intact past a mis-speculation recovery
action and that it support the out-of-order allocation and freeing of speculative storage. These requirements
disqualify many microarchitectures. In-order speculative microarchitectures like Sun’s UltraSparc-III that
use working (future) register files indexed by architectural register number both disallow arbitrary assign-
ments of physical results to architectural names and overwrite the mis-speculated instructions’ results dur-
ing recovery. Intel’s P6 [9] processor and HAL’s SPARC64 V [6] keep speculative results in the reorder
buffer, preventing their preservation past a mis-speculation recovery. IBM’s POWER3 [22] processors and
AMD’s K7 [5] have physical register files separate from the reorder buffer, but also have an architectural
register file and require that physical registers be allocated and freed in-order. Microarchitectures with
physical register models thatcan support integration are the out-of-order Alpha processors starting with
the 21264 [11], those of MIPS beginning with the R10000 [24], and Intel’s Pentium 4 (the NetBurst
microarchitecture) [8].

3.2  Integration Application Manager: Squash Reuse

In this section, we describe the squash-reuse application of register integration by explaining the modified
handling of correct-path (i.e., eventually retired), squashed, and integrating (i.e., squash-reused) instruc-
tions. Our reuse management usesexplicit physical register states.

3.2.1  Application Management Using Register States

An effective implementation of squash reuse demands that, at any point in time, results belonging to the
most recent squashed instructions reside in the IT. To accomplish this, we initially proposed a scheme that

FIGURE 2. Pipeline with Register Integration. Integration specific structures and paths are in bold.

fetch decode rename

map
table

reservation
stations verifyRF FU

IT

retire

misprediction?
mis-integration?

ROB

integrate



SQUASH REUSE VIA A SIMPLIFIED IMPLEMENTATION OF REGISTERINTEGRATION

7

treated the IT as a holding station for squashed results on their (logical) way from the reorder buffer to the
free list [19]. We saw this scheme as “evolutionary” because it required no changes to the semantics or
handling of the two existing structures: the reorder buffer and free list. The effect of a third physical regis-
ter state—that of a “squashed” physical register waiting to be integrated—was achieved implicitly. Regis-
ter state was inferred based on presence in or absence from the IT. In our ensuing research, we have found
that such a scheme has three important disadvantages. First, it is not sufficient in cases when multiple
applications of integration—for instance squash reuse and pre-execution reuse—are implemented simulta-
neously. We ignore this problem for now, as squash reuse is the only application that interests us here. Sec-
ond, it compresses the creation of IT entries into bursts which the IT may not be engineered to handle.
Third and most importantly, it forces the IT into the dual role of integration broker and register manager, an
antagonistic combination that results in sub-optimal operation on both fronts. Due to these disadvantages,
we now prefer a management scheme based on explicit register states.

Creating IT entries during mis-speculation recovery is acceptable if recovery is performed serially. How-
ever, in most microarchitectures, including the Alpha 21264 [11] and MIPS R10000 [24], recovery is
implemented as single-cycle restoration from a checkpoint. To avoid slowing the recovery process by bur-
dening it with the creation of large numbers of IT entries, we adopt the approach of creating IT entries for
all instructions during register renaming and only performing bulk changes toregister stateduring recov-
ery. This approach demands that we allow entries for physical registers in all states to reside in the IT. This,
in turn, requires that we represent register states explicitly because presence in the IT no longer distin-
guishes integration-eligible “squashed” registers from integration-ineligible “active” or “free” registers.

Our register state model is shown in Figure 3 at the bottom of this page. It includes the three register states
that are implicitly used in a conventional superscalar processor and the transitions among them. These
states areF(ree), A(ctive), andR(etired). Free registers are not associated with any value and are recog-
nized by their presence in the free list. Active registers are associated with the speculative results of in-
flight instructions and are recognized by corresponding entries in the reorder buffer. Retired registers cor-
respond to the last known architectural values of the logical registers and are recognized by their absence
from both the free list and the reorder buffer. The transitions between these states occur during renaming
(free to active), retirement (active to retired, retired to free), and mis-speculation recovery (active to free).

To implement squash reuse, we add a fourth state and three transitions. Rather than transition to the Free
state on mis-speculation recovery, the destination registers of squashed instructions transition to the
S(quashed)state where they await integration. If a Squashed register is successfully integrated, it transi-
tions back to the Active state. Notice, according to this model, a register may transition back and forth
between the Active and Squashed states multiple times. This corresponds to the undesirable but perfectly
natural case of an instruction being squashed (and integrated) multiple times due to independent mis-spec-
ulation events. If a Squashed register is not integrated, it eventually transitions back to the Free state. Here,
“eventually” corresponds to the need for a free register by a running thread, eviction from the IT, or the
overwriting of an input register mapping. The problem of “leaking” Squashed registers is disposed of in a
trivial way. It is always correct to transition a Squashed register to the Free state. Such a transition only
prevents a subsequent integration opportunity and does not constitute incorrect execution.

FIGURE 3. Physical Register States and Transitions for Register Integration-Based Squash Reuse.The
state and transitions used to implement squash-reuse are in black.
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In the Figure 1 example, we showed state as represented in the IT itself. This may be the actual implemen-
tation, or it may be that states are represented in a separate vector that maps physical register number to
state bits. Such a vector then performs double duty as the free list. We prefer the vector implementation
since it allows bulk transitions to be performed using vector operations rather than IT accesses.

3.2.2  Handling Squashed Results and Integrating Instructions

Integration requires that we create IT entries for renamed instructions. This is not a strict requirement as
failure to create an IT entry only implies forfeiture of future integration should the corresponding instruc-
tion be squashedand retraced. Be that as it may, IT creation applies to all instructions, squashed or not.

Integration also requires modifications to the recovery process. Recall, it is during this process that we per-
form bulk state transitions on the physical register state vector. In a conventional processor, one can think
of the recovery procedure as simple replacement of the current state vector with some checkpointed ver-
sion. In an implementation of integration-based squash reuse, one may think of the squash procedure as
performing the following state vector operation: the current vector is replaced with a checkpointed version
except that all physical registers that are in the Active state in the current version and the Free state in the
checkpointed version are transitioned to the Squashed state. In other words, all registers that have been
“activated” (allocated)sincethe checkpoint are “squashed”. This conceptually simple operation is correct,
but can be refined to improve IT performance and to simplify the handling of integrating instructions. The
specific refinement we refer to is that we would like to transition to the Squashed states only physical reg-
isters that have already beenwritten, i.e., whose corresponding instructions have completed execution. The
reason is that it is the integration ofcompletedresults that contributes most to performance. Integration
provides two main performance benefits: 1) it allows instructions to bypass the out-of-order execution
engine and 2) it collapses dependent chains of instructions. Neither of these benefits applies to instructions
that have not issued and only the first applies to instructions that have issued but not completed. However,
the number of results likely to be integrated in this post-issue/pre-completion state is small. In return for
forfeiting them, we simplify the handling of integrating instructions by treating them all as complete.

Allowing only written results to be integrated greatly simplifies the handling of integrating instructions. An
integrating instruction is entered into the reorder buffer and marked as complete. Each entry in the reorder
buffer is extended with aintegrating bitwhich is set for all integrating instructions. Integrating loads (and
stores) are allocated load (or store) queue entries that are also marked as complete. If the integrating
instruction is a branch, its resolution and any potential recovery sequences are started immediately. In gen-
eral, an integrating instruction bypasses the out-of-order execution core entirely; it is not allocated to a res-
ervation station, scheduled, executed, or written back. Integratingstoresare re-issued to the store queue to
allow their values to be forwarded to subsequent loads via the conventional store queue channel.

3.3  Integration Engine

At the center of the integration mechanism is the integration circuit itself. The integration circuit examines
each dynamic instruction and decides whether or not it may integrate a squashed result. Of course, this
must be done for multiple, potentially dependent instructions in parallel. In this section, we present a pos-
sible implementation of this logic. We begin with the scalar circuit, then proceed to the superscalar case.

3.3.1  Scalar Register Integration

Shown on the left side of Figure 4, scalar register renaming occurs in two logical steps. First, an instruc-
tion’s logical inputs are renamed to physical inputs using lookups in the map table. Second, its logical out-
put is allocated a new physical register and this new logical-to-physical mapping is entered into the map
table, allowing future instructions that need the value to obtain their inputs from the correct location. We
call the two stagesinput routingandoutput allocation, respectively. Integration adds a piece calledoutput
selectionin which the output mapping must be chosen between a newly allocated physical register (no
integration) and a physical register obtained from an IT entry (successful integration). The output selection
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circuit occurslogically after the input routing circuit since the integration test must compare the input
physical registers of the sequential instance with those in the IT entry. However, the scalar implementation
of integration can be thought of as occurring in one of two ways. In the first, output selection is imple-
mented serially after input routing with the integration table indexed by instruction PCand input physical
registers. In the second, output selection is split intoIT lookup, which happens in parallel with input rout-
ing, and anintegration test, which occurs logically after it. In this organization, the IT is indexed byPC
and the physical register numbers are used as matching tags.

The right side of Figure 4 shows the operation of the PC-indexed integration circuit via the integration of
instructionA5 from the example in Figure 1. The figure is sliced both vertically and horizontally. Vertical
slices show structures: the integration table (IT), map table, free list and the instruction itself. Horizontal
slices show time. The top slice shows the instruction in raw form and the structures before renaming. The
bottom slice shows the renamed instruction and the updated structures. The output selection function
selects between the physical register from the IT (p3) and a newly allocated one from the free list (p7). The
function is implemented by comparing the corresponding input physical registers from the IT entry and the
map table (both arep1) and checking that the candidate physical register is in the Squashed state. Success-
ful integration has five effects: 1) the current instruction is marked as integrating, 2) the output of the inte-
grating instruction is set to the physical register entry from the IT, 3) the same physical register is set as the
current mapping in the map table, 4) the corresponding IT entry transitions to the Active state, and 5) the
newly allocated but unused physical register is returned to the free list.

3.3.2  Superscalar Register Integration

The merits of each implementation are open to debate in the scalar realm, but in a super-scalar environment
only the second is viable. While the first scheme interleaves and serializes the input routing and output
selection decisions that must be made for each instruction, the PC indexed scheme permits a parallel prefix
implementation similar to the one used to “superscalarize” conventional register renaming. Let us review
conventional superscalar renaming. Superscalar renaming is more complex than scalar renaming because
its input routing decisions must reflect intra-group dependences. In superscalar renaming,dependence-
check logicacts in parallel with output allocation. This logic compares the logical input of each instruction
in the group with the logical output of each previous in-group instruction; a match overrides the initial
input routing retrieved from the map table and routes the input to the appropriate newly allocated physical

FIGURE 4. Scalar Integration Circuit. On the left is a scalar integration-less, register renaming circuit. On
the right is a scalar renaming circuit augmented with register integration. We use the organization in which
the IT and map table are accessed in parallel. An extension of this circuit implements superscalar integration.
The diagram traces the IT, map table and free list, as well as the instruction itself through the two logical steps
of integration-enabled register renaming. At the top of the figure, the instruction shown is raw and the
structures are as they appear before the instruction is renamed. At the bottom, the instruction is renamed and
the structures reflect that fact. The integrating instruction is A5 from Figure 1.

Integration Table

Integration Circuit

Map Table Free List

OI2I1PC State
p3p1A5 A

OI2I1PC State
p3p1A5 S

OI2I1PCInt?
p3p1A5Y

r2r1
p1p2

OI2I1PC
r2r2A5

r2r1
p3p2

=

=S &

p8p7

p8p7

InstructionMap Table Free List

OI2I1PC
p7p1A5

r2r1
p1p2

OI2I1PC
r2r2A5

r2r1
p7p2

p8p7

p8

Instruction



ROTH & SOHI

10

register. For example, in a group of four two-input, one-output instructions each of the second instruction’s
inputs has to be compared with the first instruction’s output, each of the third instruction’s inputs has to be
compared with the outputs of the first two instructions and each of the fourth instruction’s inputs has to be
compared with the outputs of the first three instructions. The total number of comparisons for this case is
12. In general, the number of logical register comparisons required to implement the dependence cross-
check isI * N(N-1)/2, with I the number of inputs per instruction andN, the superscalar width. This num-
ber grows asN2. The depth of the circuit is linear withN.

In addition to the conventional dependence-check circuit that compares logical registers, integration
requires that we implement output selection and any corrections it might imply for input routing for subse-
quent instructions. Recall, for the scalar integration test we compared each IT entry input with the corre-
sponding register retrieved from the map table. In the superscalar case, we must also compare it to the
physical register outputs for all integration candidates ofat most oneprior instruction in the group, the
instruction (if it exists) that writes the corresponding logical register. The logical-register dependence-
check logic lets us know the identity (in-group position) of this instruction in advance. Note, there is no
need to compare the candidate input with the newly allocated physical registers corresponding to this prior
instruction: the situation in which an integrating instruction depends on an older in-group non-integrating
instruction is impossible. The priority-encoding depth of the output selection circuit isN. However, the
number of physical register comparisons in the circuit grows with bothN, superscalar width, andM, the
number of possible IT matches or the associativity of the IT. The precise formula isI * M * (1 + M * (N-
1)). The growth of the function isINM2. For instance, a four-wide machine with a direct-mapped IT
requires 8 physical register comparisons to implement integration, the same processor with a 2-way IT
needs 28 comparisons, while an 8-wide processor with a 4-way IT requires 232 comparisons! Although the
complexity of the circuit discourages high-associativity IT implementations, it is actually less complex
than we originally thought. In our initial work [19], we did not see the potential for using the logical depen-
dence-check logic to limit the number of physical register comparisons. Believing that each physical regis-
ter input of each IT entry had to be compared to physical register outputs of the IT entries ofall previous
in-group instructions, we reported the complexity of the circuit asIN2M2.

We should mention here that it may be possible to reduce the complexity of the integration (output-selec-
tion) circuit using different IT organizations. For instance, the IT could internally perform the intra-group
dependence checks and store groups of dependent instructions in a kind of “trace” that can be integrated
using INM comparisons. The obvious problem with this approach is that of choosing the appropriate
instruction grouping. Currently, we do not know of any such optimized organizations in particular.

3.3.3  Pipelining Register Integration

Although complex, the implementation of the integration circuit is unlikely to slow down the conventional
register renaming circuit to the point where it needs to be superpipelined. The reason for this is that
although register renaming and integration are semanticallyatomic—a group of instructions can only be
renamed and integrated once renaming and integration of the previous instruction group has completed—
this is not exactly the case. The atomic portions of both renaming and integration are actually quite small.
Many of the component tasks are specific to an instruction group and can be moved up in the pipeline with-
out introducing hazards.

We first consider the implementation of the conventional superscalar renaming circuit. A conventional
renaming circuit logically completes six tasks: it 1) reads map table entries, 2) acquires free registers from
the free list, 3) computes intra-group dependences, 4) uses the intra-group dependence information to route
instruction inputs to the right physical registers, 5) updates the map table, and 6) returns any unused regis-
ters to the free list. This is a lot of work and, in addition, it may appear that all of these tasks are interde-
pendent and must be completed before the next group of instructions can be renamed. However, this is not
so. Only tasks 1, 4, and 5 must be atomic and, furthermore, tasks 4 and 5 can be performed in parallel.
Tasks 2, 3 and 6 are independent of the renaming of prior and future instruction groups and can be com-
puted in earlier pipeline stages or delayed until subsequent stages. For instance, the computation of intra-
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group dependences requires only the logical register names of instructions within the group. This informa-
tion can be computed earlier in the pipeline and transmitted to the critical register renaming stage.

Register integration has a similar character and its components permit a similar organization. We have
already seen that the intra-group architectural register dependence-check logic can be moved up in the
pipeline. It is also the case that the intra-groupphysical-registerdependence-check—theINM2 physical
register comparisons that implement superscalar integration—can be moved up. Now, no integration deci-
sion can be finalized until the current physical register mappings are retrieved from the map table. The final
integration decisions which require the current mappings from the map table must be performed during the
critical stage. However, these can simply aggregate and gate the previously made intra-group decisions
using a single layer of AND/OR logic.

The observation that permits the physical-register cross check to be moved away from the critical single-
cycle renaming path is that a group of instructions can read its corresponding IT entries before the instruc-
tions in the immediately preceding group have finished writing their entries into the IT. The only impact of
this dissociation is that instructions in a group lose the ability to integrate the results of instructions from
the immediately older group (or the two immediately older groups if IT reading is moved two stages ahead
of the last renaming stage). In general, the implementation of register integration easily admits simplifica-
tions and omissions of this kind. After all, integration is a performance optimization and failure to integrate
a result does not constitute an incorrect execution, only a lost opportunity for performance improvement.
However, this particular optimization does not result in even a single lost integration opportunity. Recall, in
order to be integration-eligible, a physical register must belong to an instruction that has completed execu-
tion and subsequently been squashed. Given the nature of the pipeline, it is impossible for an instruction to
complete execution in the cycle immediately after being renamed. In general, a minimum ofJ cycles must
pass between renaming and completion. The implication is that instructions that have been renamed within
the previousJ cycles are integration-ineligible anyway, so it does not matter that the current group of
instructions cannot see their IT entries. Depending on the value ofJ and the degree to which register inte-
gration is pipelined, it may be possible to implement IT entry creation after renaming and integration.

We envision register integration being implemented in four stages. In the first stage, the IT is read using the
instruction PCs and the intra-group architectural-register dependence check is performed. In the second
stage, the IT entries and group dependence information are used as inputs to the intra-group physical-regis-
ter dependence check circuit which makes the superscalar integration decisions. The third stage performs
conventional register renaming and per-instruction scalar integration—the physical register inputs of each
IT entry are compared to the physical registers obtained via map table lookups—and combines those
results with the results of the superscalar integration circuit. This third and final stage also includes the
manipulation of the register state vector/free list. The state vector is read and its results are incorporated
into the integration decisions, which are then implemented as state transitions. The output of the third stage
is a group of renamed instructions each with an integrating bit, an integration-updated register map table,
an updated state vector. In the fourth stage, the integrating bit gates the creation of IT entries and the allo-
cation of execution resources on a per-instruction basis.

3.4  Integration Verifier

Simplifying the register integration circuit and adopting a state-based register management scheme are
important differences from our initial integration proposal [19]. However, the most significant change is in
the implementation of the verifier. There are two ways to ensure that mis-integrating loads do not retire.
Our initial approach was to avoid mis-integrations in the first place by keeping IT loads coherent with pro-
gram stores. We proposed storing data addresses (and potentially values) in IT entries and using associative
matching with in-flight store addresses to remove the appropriate loads from integration consideration. We
now believe that this approach is not entirely practical. It requires a considerable amount of matching logic
and data paths between the IT and the load and store queues. At the same time, it cannot detect mis-inte-
grations that result from theabsenceof a store along the architectural execution path (there is no store to
trigger the snoop), requiring us to implement a backup mechanism for this case. Due to these drawbacks,
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we have changed tack and now advocate detecting and correcting mis-integrations rather than trying to
avoid them. Ironically, even in this implementation, many mis-integrations can be avoided using a mecha-
nism similar to a load-speculation (i.e., memory disambiguation) predictor [4, 14, 15, 25].

3.4.1  In-Order Pre-Retirement Re-Execution

The detection/correction approach is realized byre-executingintegrating loads and treating a change in the
output value as a conventional load mis-speculation. Re-execution enables the use of a simple IT that com-
municates only with the register renaming stage, while uniformly and unequivocally detecting all mis-inte-
grations. Of course, the problem with re-execution is that it consumes execution bandwidth and core
resources. We can rationalize away this “problem” by considering that, were integration not implemented,
these resources would have been consumed anyway. However, this justification is unnecessary. The kind of
re-execution we propose is not re-execution by the out-of-order core, but a much cheaper form—in-order
pre-retirement re-execution.

In-order pre-retirement re-execution is a powerful and general technique for simplifying the implementa-
tion of microarchitectural mechanisms by relieving them from having to handle difficult but rare corner
cases correctly. With re-execution acting as a “safety net”, these mechanisms can be implemented more
simply and efficiently, potentially resulting in higher overall performance. Register integration fits this pro-
file perfectly. A holistic application of this philosophy is the Dynamic Verification Architecture (DIVA) [1,
2], in which all instructions are re-executed. DIVA’s authors make an additional contribution with the
observation that, with tentative inputs and outputs supplied by the main execution engine, the re-execution
of dependent instructions—and even different stages of the same instruction—can be performed in paral-
lel, driving the performance cost of re-execution to near zero. DIVA is a compelling technique with many
applications, making it a strong candidate for implementation in future microprocessors. If that is indeed
the case, then our re-execution mechanism is given to us and we need not implement one specifically to
support integration. However, it should be noted that register integration does not require a full bandwidth
DIVA implementation as only integrating instructions, which typically account for less than 15% of the
dynamic retirement stream, must be re-executed.

Earlier, we mentioned that some register management tasks may be turned into verification tasks. One such
task is the cascaded freeing ofstaleSquashed registers. When a Squashed register is freed, all dependent
Squashed registers technically become un-integrable. A dependent Squashed register that is not freed is
stale. If, by chance, the freed register is remapped to thesamelogical register by an unrelated instruction,
the stale IT entry creates the false impression the dependent instruction result is valid. We can implement
incremental cascaded freeing within the context of our state transition regime. Doing so means that only
load mis-integrations are possible (stale entry mis-integrations are impossible) and hence that only inte-
grating loads must be re-executed. We have found that load re-execution can be piggy-backed onto the
store retirement ports with almost no performance loss. However, an explicit implementation of cascaded
invalidation requires an additional state and some associative matching capability in the IT. Consequently,
we omit this functionality from the register state machine, and allow stale-entry mis-integrations to be
caught by re-execution. This choice requires a DIVA implementation. Our simulations model a DIVA re-
execution pipeline stage that has 25% the execution bandwidth of the out-of-order core. Since integrating
instructions comprise about 15% of the retirement stream, this is sufficient to avoid re-execution stalls

3.4.2  Avoiding Likely Mis-Integrations

Retirement-time re-execution makes mis-integration detection perfectly accurate—all mis-integrations are
caught and no false mis-integrations are signaled—as well as cheap. However, mis-integration recovery is
still expensive as it requires squashing and re-fetching the mis-integrating instruction and all subsequent
instructions. From a performance standpoint, a mis-integration is an artificially introduced load or branch
mis-speculation. Ideally, we would like to avoid mis-integrations in the first place. Fortunately, there is an
easy way of doing this that does not involve snooping the IT.
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Load mis-integrations are stable and, as a result, predictable. Load mis-integrations result from the pres-
ence or absence of different communicating stores—stores that write to the address the load will ultimately
read—along different paths to a load. Store-load communication is a function of program structure; it
exists specifically to implement some programmer or compiler idiom. Since program structure is fixed
(ignoring self-modifying code), store-load communication patterns are fixed and can be predicted with
high accuracy. Previous work has established the predictability of store-load communication empirically
and exploited it to create predictors for avoiding store-load mis-communication [4, 14, 15, 25]. Store-load
mis-communication—also called memory-ordering violation or load mis-speculation—is predictable
because it is the product of two fixed entities: 1) program structure and 2) the scheduling policy. The mech-
anism for avoiding likely load mis-integrations is motivated by, and is structurally very similar to, mecha-
nisms for avoiding load mis-speculations. Load mis-integration is a product of three stable factors: 1) the
presence (or absence) of a communicating store along one path to the load, 2) the complementary absence
(or presence) of the same store along another path to the load, and to a lesser degree 3) the inability of the
branch predictor to predict the correct path. The stability of these factors combine to create a fourth stable
and, hence, predictable phenomenon: if an instance of a particular static load results in a mis-integration,
then future instances of that load will also (with high probability) result in mis-integration.

We exploit this predictability by augmenting the integration circuit with a small PC-indexed cache called
the load integration suppression predictor (LISP). Each LISP entry is a saturating up-down counter. The
LISP is accessed in the early stages of the register integration pipeline and updated at retirement by the re-
execution engine. The detection of a mis-integration creates an LISP entry if none exists and increments its
counter. A successful re-execution (no mis-integration) decrements the counter of an existing entry. The
benefit of a successful integration can be weighed against the cost of a mis-integration by the choice of
increment, decrement, and suppression threshold values. Empirically, we have found that incorporating
branch (path) history into the LISP indexing function improves LISP accuracy appreciably. This is intui-
tive since the presence or absence of the mis-integration causing store is entirely path dependent. The LISP
is effective at suppressing the more common load mis-integrations. It does not capture mis-integrations due
to stale IT entries, as these are only very loosely correlated with program structure.

3.4.3  Interactions with other Physical Register Disciplines

Squash reuse has some non-trivial interactions with other mis-speculation recovery disciplines. First
among these is its interplay withhigher-order integrations. The possibility and presence of mis-integration
creates a squash reuse feedback loop. The integration of squashed instructions raises the possibility of mis-
integration, which induces a squash whose instructions can be reused. We call instructions that integrate
results squashed due to a control- or data- mis-speculationprimary integrations. Higher-order integrations
are integrations that integrate results squashed due to mis-integrations. In a strange sense, the presence of
integration reduces the cost of mis-integration (via the reuse of mis-integration-squashed instructions)
while increasing the frequency of mis-integration (via higher order mis-integrations).

Higher-order integrations must be handled carefully. In general, any results squashed due todata mis-spec-
ulationssuch as mis-integrations, load mis-speculations (memory-ordering violations) [4, 14, 15, 25], or
value mis-speculations [12] must be handled differently than those squashed due to control mis-specula-
tion. Instructions squashed as a result of a control mis-speculation are correct from a data standpoint and
their results may be integrated without fear (modulo load mis-integration). Physical registers squashed as a
result of a data mis-speculation may not be correct from a data standpoint—they may depend on the mis-
speculated instruction—and the likelihood that their integration will result in a mis-integration is high. If
caution is not exercised, we could run into an infinite loop where the same mis-integrated instruction is
repeatedly mis-integrated, squashed, and mis-integrated again. Obviously, we must avoid this scenario.

One broad solution to this problem is to not perform the Active-to-Squashed transition on recovery from a
data mis-speculation. However, this solution is too harsh since it prevents the correctly executed instruc-
tions that were lost during recovery from being salvaged. An effective trick is to gate the Active-to-
Squashed transitiononly for the data mis-speculated instruction itself, which is forced to transition back to
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the Free state. Doing this effectively “detaches” all dependent instructions from possible integration, while
leaving all independent instructions intact.

A second interesting interaction exists between integration and another technique for salvaging work lost
to a data mis-speculation:selective squashing[7, 12, 16, 17]. In selective squashing, instructions are kept
in reservation stations until retirement allowing them to simply re-issue as data mis-speculations are
resolved. If selective squashingis implemented, integration is not “activated” during data mis-speculations
since the instructions are not squashed and re-fetched. Integration, on the other hand, still handles control
mis-speculation squashes which, quite conveniently, cannot be handled by selective squashing. Integration
and selective squashing complement each other. However, we do not explore their interaction experimen-
tally; our simulations model full squashing for all data mis-speculations.

3.5  Building a Balanced Register Integration System

Earlier we mentioned the problem of saddling the IT with the dual roles of physical register management
and integration brokerage. Fortunately, our choice to create IT entries for all instructions during register
renaming forces us to confront this problem, while our use of explicit register states provides the solution.
These two components allow us to create a balanced, flexible register integration system that can produce
high integration rates with a low integration circuit complexity and no direct adverse interactions with
active instructions.

Although IT entries are created for active instructions during renaming, we cannotrequire every active
instruction to have an IT entry. Recall, the IT is indexed by PC to facilitate the integration process itself.
Forcing correspondence between IT entries and active instructions would create the undesirable situation
in which IT set-conflicts stall register renaming. Instead, we exploit our explicit register state scheme to
enforceno invariant relationships between IT entries and active instructions and, in general, between IT
entries and physical registers. In other words, because physical register state is represented explicitly, pres-
ence or absence in the IT is not required to deduce this state. A physical register need not be associated
with an IT entry and vice versa.

This dissociation not only dissolves the harmful interactions between the IT and active instructions, it also
allows the IT and physical register file to be sized independently to maximize integration opportunity while
minimizing integration circuit complexity. The size of the physical register file determines the number of
integration-eligible Squashed physical registers that can be “in circulation” at any time. Empirically, we
have found that for our configuration—which, admittedly, has a large 256-entry reorder buffer—giving the
processor the minimal number of physical registers required to store the values for all architectural and
speculative (in-flight) values provides the best performance. This may seem completely counter-intuitive
as, under this configuration, a full reorder buffer wipes out all squashed results. However, the bulk of suc-
cessful integration takes place soon after a squash when the reorder buffer is likely to be quite empty. In
addition, occasionally flushing all squashed results is actually a desired behavior as it eliminates stale
entries that could otherwise lead to mis-integrations.

While technically the IT needs only as many entries as there are physical registers, it is often advantageous
to build a larger IT. The reason for this is that reasonable management of a minimally-sized IT may only be
performed if the IT is fully associative. Since the IT is indexed by PC and requiresN read and write ports
whereN is the renaming width of the machine and furthermore since IT associativity may be related
(although not necessarily) to integration circuit complexity, a fully associative implementation is impracti-
cal. However, while a minimally-sized low-associativity IT (we imagine 4 to be the maximum practical
associativity) can be engineered, it will have many PC conflicts that will substantially reduce the number
of successful integrations. To compensate for this, we can use a large IT that will disperse PC collisions
among many sets and effectively limit conflicts to multiple instances of the same instruction. We will quan-
tify the performance impact of this organization in Section 4.3.1.
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4  Performance Evaluation

We evaluate the potential performance impact of integration using cycle-level simulation. We present a full
sets of results for one specific design meant to represent a potential next-generation microprocessor. We
then look at three parameters in the register integration-based squash-reuse design space: IT associativity,
IT size, and the mis-integration suppression mechanism. Finally, we discuss the impact of selected base
microarchitecture parameters on the applicability and efficiency of register integration.

4.1  Experimental Framework

We evaluate integration using the SPEC2000 integer benchmark suite. The programs are compiled for the
Alpha EV6 architecture by the Digital UNIX V4cc compiler with optimizations-O3 -fast . We use the
training data sets for reporting performance for all benchmarks. The programs are simulated to completion
using 10% cyclic sampling with a granularity of 100 million instructions per sample. Our experiments with
unsampled runs [18] show that using cyclic sampling to compute speedups results in very small errors, typ-
ically less than 10% of the computed speedup (or slowdown) itself.

Our simulation environment is built on top of the SimpleScalar 3.0 toolkit. The cycle-level simulator mod-
els a superscalar, out-of-order processor with nominal stages fetch, decode, register rename and dispatch,
schedule and register read, execute, writeback, re-execute/verify and commit and a parametrizable number
of pipeline stages in each logical stage. We model a memory system with non-blocking caches, finite
write-buffers and MSHRs, and cycle-accurate bus utilization. Table 1 details the simulation parameters.

Since squash reuse feeds on results of instructions that were squashed due to a mis-speculation, we simu-
late a processor that speculates aggressively. The processor we model can fetch, dispatch, issue and retire 8
instructions per cycle. Each cycle, instructions can be fetched from multiple cache lines with up to one
internal taken branch. The processor can speculate past an unlimited number of branches. The processor
has large instruction buffers. Up to 256 instructions may be simultaneously in-flight in the execution core,
with up to 128 loads and 64 stores. There is a centralized pool of 120 reservation stations, so at any point
only 120 of the 256 in-flight instructions may be un-issued. Of the 8 instructions that can be executed every
cycle, two may be loads and two more may be stores. The out-of-order scheduling logic speculates loads
aggressively, issuing them in the presence of older stores with unavailable addresses. A mis-speculation

Front-End 2K-entry combined 6-bit history gshare and bimodal predictor with 2-bit saturating counters. 1K entry, 4-way
associative BTB, 16 entry return-address-stack. 3-cycle fetch. 8-entry instruction buffer. Up to 8 instructions
from two cache blocks fetched per cycle. A maximum of one taken branch per cycle. 8-wide single-cycle
decode.  Recovery from BTB misses for direct, unconditional jumps triggered at decode.

Execution
Engine

8-wide superscalar out-of-order speculative issue with a maximum of 256 instructions or 128 loads or 64
stores in-flight. 2-cycle register renaming and dispatch stage renames to 512 physical registers. 120 reserva-
tion stations. 4-cycle schedule/register read. A maximum of 8 instructions scheduled every cycle, with up to
4 integer ALU operations, 2 loads, 2 stores, 2 FP operations and 1 branch. Memory and control instructions
have the highest scheduling priority. Priority within a group is determined by age. Loads speculatively issue
in the presence of older stores with unknown addresses. The load and subsequent instructions are squashed
and refetched on an early issue. Recovery from all forms of mis-speculation is monolithic. Address genera-
tion takes 1 cycle and store-to-load forwarding via the store queue takes 2 cycles. The processor has 4 1-cycle
integer ALUs, 1 1-cycle branch unit, 1 3-cycle fully-pipelined FP adder, 1 4-cycle fully-pipelined integer/FP
multiplier, and 1 20-cycle, non-pipelined integer/FP divider.

Memory
System

32KB, 32B lines, 2-way associative, 1-cycle access L1 instruction cache. 32KB, 32B lines, 2-way associa-
tive, 2-cycle access, L1 data cache. A maximum of 16 outstanding load misses. 16-entry store buffer. 16-entry
ITLB, 32-entry DTLB with 30-cycle hardware miss handling. 1MB, 64B line, 4-way associative, 12-cycle
access L2 cache. 70-cycle memory latency. 32B bus to L2 cache clocked at processor frequency. 16B bus to
memory clocked at 1/3 processor frequency. Cycle-level bus utilization modeled.

Register
Integration

1K entry, 4-way set associative integration table. A direct-mapped, 256-entry load integration suppression
predictor (LISP) indexed by XORing the PC with 4 bits of branch history. Each LISP entry is a 4-up, 1-down
saturating counter with a threshold of 8.

Re-Execution
Engine

Integrating instructions are re-executed prior to retirement. The processor can re-execute up to 2 instructions
per cycle, with a maximum of 1 load or store re-executed per cycle. Mis-integration detection triggers a flush
that includes the offending instruction.

TABLE 1. Simulated Processor Configuration.
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causes the load and all downstream instructions to be monolithically squashed and refetched. We model an
aggressive dependence-speculation mechanism [4, 14, 15, 25] that reduces the incidence of conventional
load mis-speculations nearly to zero.

We also model an aggressive but non-ideal register integration configuration. Our mechanism uses a 1K-
entry 2-way set-associative integration table (IT). The processor is not equipped with additional physical
registers to explicitly store squashed results. At any time, squashed results can only be stored in those reg-
isters that are not allocated to in-flight instructions or architectural values. The load integration suppression
predictor (LISP) is direct-mapped with 256 entries. To index the LISP, we XOR the load PC with 4 branch
history bits. For verification purposes, all integrating instructions are re-executed. Our simulated processor
can re-execute up to two integrating instructions every cycle with a maximum of one load or store. On mis-
integration detection, the entire pipeline is flushed, including the mis-integrating instruction itself.
Although its proper value is available, we do not provide additional paths to send re-executed results back
to the main execution core. All recovery is modeled as monolithic and occurring in one cycle.

4.2  Base Configuration Results

Table 2 on the next, which is split into two for readability, shows the performance impact of integration
using the configuration described above. Data is presented in four parts. The first two characterize the per-
formance of the base and integration-enhanced system in terms of instructions fetched and executed,
branch mispredictions, branch misprediction resolution latency, and instructions retired per cycle (IPC).
Comparing these groups of numbers pair-wise gives an idea of the overall effect of integration on specula-
tive (mis-speculative) processor activity. The next two parts measure the activity and effectiveness of inte-
gration using more direct metrics.

In the first bold portion at the bottom of the table, we report the absolute count of instructions squashed.
This count contains only instructions squashed after having completed execution, i.e., integration candi-
dates. We also show the number of integrating instructions and integrating mispredicted branches (these
are the ones whose mispredictions were immediately resolved), and the number of mis-integrations. Inte-
grating instruction counts do include higher-order integrations, integrations of results that were squashed
due to a mis-integration. However, integration counts are measured during instruction retirement to avoid
counting integrating instructions that were subsequently squashed, and double-counting integrating
instructions that were subsequently squashed and re-integrated. Note, the counts of mis-integrations and
integrating mispredicted branches are reported inthousands(K); other counts are reported inmillions (M).

In the second bold portion, we compute the characteristic metrics of integration and its impact on perfor-
mance. Thesquash rateis the number of integration candidates as a percentage of the total number of
instructions committed; it is a measure of the amount of work available for squash reuse to exploit. The
salvage rateis number of integrating instructions as a percentage of integration candidates and measures
the rate at which integration candidates are harvested. Thecontribution rateis the number of integrating
instructions as a percentage of the total number of instructions committed; it is the amount of work integra-
tion contributes to the architectural execution of the program. The contribution rate is the product of the
squash and salvage rates. The final three metrics measure the percentage reduction in instructions fetched,
instructions executed, and total execution time due to integration.

4.2.1  Register Integration and Program Structure

The degree to which a program benefits from reuse depends on two factors: the number of integration can-
didates (the squash rate) and the rate at which these are successfully integrated (the salvage rate). The
squash rate is a measure of (mis-)speculative execution in a program and the amount of work available for
register integration to exploit. Since we define the squash rate to include only instructions that completed
execution prior to being squashed, a high squash rate requires more than a substantial number of branch
mispredictions; it also requires that these mispredictions be resolved after many younger instructions have
completed execution. Squash rates for the SPEC2000 benchmarks range from 3% forbzip2 to 35% for
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vpr.p. Not surprisingly, the squash rate is inversely correlated with performance (IPC); programs that have
many branch mispredictions and resolve these mispredictions slowly tend to perform poorly. Programs
with low squash rates, likebzip2 andvortex, are poor candidates for squash reuse.

A high squash rate does not guarantee that a program will benefit from integration; the squashed results
must also beintegrable. The salvage rate measures both the inherent integrability of squashed results and

bzip2 crafty eon.c eon.k eon.r gap gcc gzip
Committed instructions (M) 6000.00 2600.00  200.00  900.00  300.00  900.00  500.00 5400.00
Base Executed instructions (M) 6407.07 3264.39  233.32 1146.47  360.17 1124.99  677.91 7156.87

Fetched instructions (M) 7988.89 6217.23  353.74 2043.63  585.00 2061.66 1295.57 11185.1
Mispredicted branches (M)   13.52   28.38    1.27    9.53    2.37    9.15    7.66   30.69
Misprediction resolution lat. (c)   25.63   20.17   21.12   20.14   20.40   37.71   22.13   30.80
IPC    3.75    2.45    2.86    2.41    2.59    1.40    1.66    2.38

Base+
Reuse

Executed instructions (M) 6341.63 2930.70  223.65 1065.25  340.44 1064.71  615.48 6354.40
Fetched instructions (M) 7969.36 5955.22  353.67 1987.46  575.26 2036.17 1257.83 11025.1
Mispredicted branches (M)   13.57   28.64    1.31    9.54    2.38    9.16    7.74   30.97
Misprediction resolution lat. (c)   25.29   18.76   20.31   19.32   19.66   37.01   20.99   28.93
IPC    3.75    2.45    2.86    2.41    2.59    1.40    1.66    2.38

Squashed instructions (M)  221.97  590.47   27.70  197.35   48.15  190.28  142.87 1571.10
Integrating instructions (M)   46.63  228.23    7.35   52.71   14.50   40.36   39.24  569.88
Mis-integrating instructions (K)   25.39  193.97    0.29    6.90    1.01   11.25   46.18  443.12
Integrating mispredicted branches (K)   75.11 2490.72   75.96  612.57  130.57  281.01  486.03  951.58
Squashed/committed (%) 3.70 22.71 13.85 21.93 16.05 21.14 28.57 29.09
Integrating/squashed (%) 21.01 38.65 26.53 26.71 30.11 21.21 27.47 36.27
Integrating/committed (%) 0.78 8.78 3.67 5.86 4.83 4.48 7.85 10.55
Instruction executions saved (%) 1.02 10.22 4.14 7.08 5.48 5.36 9.21 11.21
Instruction fetches saved (%) 0.24 4.21 0.02 2.75 1.66 1.24 2.91 1.43
Execution time saved (%) 0.16 3.13 0.70 2.11 1.40 0.92 2.08 1.75

mcf parser perl.d perl.s twolf vortex vpr.p vpr.r
Committed instructions (M)  900.00 1300.00 3500.00 2600.00 1300.00 1700.00  300.00 1100.00
Base Executed instructions (M) 1282.53 1757.52 4539.31 3244.05 1653.25 1795.02  419.72 1450.81

Fetched instructions (M) 2408.90 3189.06 9394.95 6554.85 3766.38 2069.75  874.80 2393.90
Mispredicted branches (M)    9.79   14.08   50.58   33.33   19.03    5.21    3.82    7.66
Misprediction resolution lat. (c)   62.85   29.36   20.88   23.03   23.50   20.19   21.55   57.30
IPC    0.82    1.58    1.80    1.95    1.90    3.55    2.27    1.56

Base +
Reuse

Executed instructions (M) 1212.89 1606.75 4108.24 3046.15 1543.00 1753.61  352.06 1310.86
Fetched instructions (M) 2361.50 3108.22 9091.56 6457.24 3624.60 2059.34  821.73 2328.51
Mispredicted branches (M)    9.81   14.19   50.76   33.48   19.05    5.21    3.82    7.66
Misprediction resolution lat. (c)   62.19   28.41   20.05   22.26   22.22   19.67   19.68   55.67
IPC    0.82    1.58    1.80    1.95    1.90    3.55    2.27    1.56

Squashed instructions (M)  203.16  356.27  852.13  578.53  217.22   88.78  104.44  284.36
Integrating instructions (M)   38.64  111.52  272.28  144.26   85.47   31.98   47.14   96.68
Mis-integrating instructions (K)   12.04   55.49   16.44    8.01   24.13    1.46    2.55    2.55
Integrating mispredicted branches (K)  105.23  898.58 1056.49 1037.42 1496.29  257.82  430.62  481.62
Squashed/committed (%) 22.57 27.41 24.35 22.25 16.71 5.22 34.81 25.85
Integrating/squashed (%) 19.02 31.30 31.95 24.94 39.35 36.02 45.13 34.00
Integrating/committed (%) 4.29 8.58 7.78 5.55 6.57 1.88 15.71 8.79
Instruction executions saved (%) 5.43 8.58 9.50 6.10 6.67 2.31 16.12 9.65
Instruction fetches saved (%) 1.97 2.53 3.23 1.49 3.76 0.50 6.07 2.73
Execution time saved (%) 0.47 1.13 2.10 1.72 3.77 0.42 5.72 1.82

TABLE 2. Detailed Integration Results for Base Configuration.
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our mechanism’s ability to realize this integrability. By definition, it is difficult to distinguish these two
notions. For the SPEC2000 benchmarks, we observe salvage rates from 20% forbzip2, mcf, andgap to
40% and above forcrafty, twolf and vpr. Obviously, a program will not salvage 100% of all squashed
instructions because at least some of those instruction will lie along paths that will not be retraced. Several
scenarios lead to low salvage rates. A program may have a low salvage rate because the code executed
along the control-dependent conditional arms of mispredicted branches may be so long that the processor
does not have time to fetch and execute the re-convergent region before the branch is resolved. Alterna-
tively, a low salvage rate may occur even if the re-convergent regionis reachable along the mis-speculated
path, but if that region contains no data-independent instructions whose results can later be integrated. On
the other end of the spectrum are programs with short mispredicted branches and a lot of data independent
work in the re-convergent region. Programs likecrafty, twolf, andvpr have salvage rates that exceed 40%.
Most programs have salvage rates of around 30%.

The net effect of squash reuse is summarized by the product of the squash and salvage rates or the contri-
bution rate, the number of successful integrations as a fraction of the number of instructions retired by the
program. Ultimately, programs that benefit from squash reuse are those with high contribution rates. Con-
tribution rates range from 1% forbzip2to 16% forvpr.p, with most hovering around 5% to 8%. It is inter-
esting to consider the composition of the contribution rate for each of the different programs.Bzip2,for
instance, is a poor candidate for squash reuse on both accounts: it squashes few instructions (4%) and sal-
vages few of those (21%) resulting in a contribution rate of under 1%.Vpr.p is at the other extreme. In the
middle are programs likevortex,which squashes few instructions but salvages them at a high rate, andmcf,
which has the opposite combination of characteristics. As would be expected statistically, most programs
do not display such extreme tendencies along either dimension.

4.2.2  Register Integration and Performance

The contribution rate is an approximate measure of integration’s first order effect, the reduction in the
number of instructionsexecutedin a program. The two measures are not identical—specifically, the contri-
bution rate is lower—because contribution measures the percentage of integrating instructions in the retire-
ment stream. It does not account for results integrated multiple times, and does not include additional
instructions executed due to recovery from mis-integration. Note, we exclude the in-order pre-retirement
re-executions from the execution counts because we consider it to be considerably cheaper than execution
as performed by the out-of-order engine.

Integration is successful at expressing this primary effect, reducing the consumption of execution band-
width by 1% to 16%, with an average of around 7%. However, this reduction does not translate directly
into a reduction in execution time. Integration operates at the register renaming stage and is therefore
unable to eliminate the latency and bandwidth of fetch from the cost of an integrating instruction. Integra-
tion frees up execution bandwidth for new instructions, but does not directly free up more fetch bandwidth
to fetch those new instructions. As a result, integration generally replaces full issue slots and reservation
stations entries with bubbles and empty entries rather than with other useful instructions.

Integration can reduce execution time via severalsecond-ordereffects. Integration can accelerate the reso-
lution of mispredicted branches, either by integrating the branch and resolving it immediately at the regis-
ter renaming stage or by integrating instructions older than the branch, allowing the branch to avoid
scheduling delays. The integration andinstant resolution of mispredicted branchesis easily measured and
we report its frequency in the table. Mispredicted branch integration exploits the “misprediction under
misprediction” scenario. Branch mispredictions tend to be clustered and several pending mispredictions
may simultaneously coexist in a large instruction window. Instant branch resolution captures the case of
out-of-order mispredicted branch completion. Since branch predictor tables are updated at retirement to
avoid pollution from wrong-path entries, the computed outcome of the younger branch is lost when the
older branch is resolved. Register integration effectively provides a second mechanism for “remembering”
the outcome of the younger branch and avoiding a repeated misprediction. Our results indicate that up to
one in ten mispredicted branches integrates a pre-computed outcome and is instantly resolved. These fig-
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ures supports the notion that branch mispredictions are clustered. The indirect acceleration of mispredic-
tion resolution, via the removal of scheduling delays, is difficult to measure separately. However, we can
measure the combined effect of both acceleration effects by comparing the average mispredicted branch
resolution latency in the unoptimized and reuse-enabled configurations. The resolution latency is defined
as the average number of cycles between the prediction (fetch) and completion (resolution) of a mispre-
dicted branch. The resolution latency is measured at retirement, and does not include latencies for branches
that were mispredicted “under” older mispredictions. On average, we observe a 3% to 5% reduction in
average resolution latency. We are currently investigating potential causes for the slight increase in number
of branch mispredictions observed when squash reuse is implemented.

The net result of integration’s second-order branch resolution effects can be measured by the reduction in
the number of instructionsfetched. This reduction measures the number of instructions eliminated from
processing completely and, hence, should correlate with the reduction in execution time. This correlation is
certainly present—we observe fetch count reductions in the range of 0% to 6% and execution time reduc-
tions in the same range—but in some benchmarks is obscured by other effects.

Our assertion that reductions in execution time track reductions in instruction fetch counts assumes that
there are no renaming stalls. Renaming stalls may be caused by one of three things: 1) instruction cache
misses, 2) insufficient reorder or memory ordering buffer entries, and 3) insufficient reservation station
entries. The first two causes are indeed rare as the SPEC2000 benchmarks have low instruction miss rates
and our configuration employs a large reorder buffer. However, stalls due to insufficient reservation station
entries do occur. Furthermore, the incidence of these stalls is influenced by register integration since inte-
grating instructions do not occupy reservation station entries. A reduction in these stalls could increase the
number of instructions fetched along mis-speculated paths while reducing execution time. Other factors
whose impact is difficult to quantify directly are the parallelism of the reused region and the extent to
which the integrated instructions help collapse dependence chains.

In addition to its benefits, integration can also degrade performance by precipitating squashes through mis-
integrations. On average, fewer than one in one thousand integrations results in a mis-integration. As our
sensitivity analysis will show (Section 4.3.3), this is due in large part to our implementation of an aggres-
sive mis-integration suppression mechanism. The presence of mis-integrations counteracts some of the
benefits of integration, increasing the number of instructions fetched and executed. In the process, it also
confuses our analysis by mixing positive effects due to correct integration with negative effects due to mis-
integration and positive effects due to higher-order integrations. However, we assume that these effects are
small due to the low incidence of mis-integrations.

Our experiments show that, ultimately, register integration-based squash reuse improves performance by
about 2% to 3% for those programs that are structurally able to exploit it, with a high near 6% forvpr.p. As
our sensitivity analysis will show, the integration configuration we describe here does leave some perfor-
mance “on the table”. However, picking up that performance requires reducing IT conflict misses and fur-
ther improving mis-integration suppression, two difficult tasks.

4.2.3  Comparison with Previous Results

A cursory look reveals that the performance impact of register integration in this study is about 2% lower
than the impact we measured and reported in our initial work [19]. In that study we showed performance
improvements of as much as 5% on four different benchmarks, even though we used a less aggressive (i.e.,
less speculative) processor, and a direct mapped IT. There are several reasons for these discrepancies. First,
our initial design used an IT that contained entries only for Squashed registers. Such a design has a higher
effective associativity than our current design, as it naturally avoids conflicts between Squashed and Active
entries. Second, our initial model included neither a load mis-integration suppression mechanism nor a
decode facility for recovering from direct jump or branch BTB misses. Load mis-speculations, in particu-
lar, provide fertile ground for integration since the reconvergent path is immediate. Our current processor
model, therefore, mis-speculates less frequently and, as a whole, its mis-speculations are less “integration
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conducive”. Finally, our initial model implemented mis-integration avoidance via IT snooping, whereas
our current model implements mis-integration detection via re-execution and predictive avoidance via mis-
integration suppression. As a result, our current model suffers from both mis-integrations and spurious
suppressed integrations, whereas our initial implementation had neither of these problems. Although it
makes register integration appear somewhat less attractive from a performance standpoint, we feel that our
current model is more realistic and makes integration more attractive from an implementation standpoint.
We have been able to replicate our earlier results by modeling a processor with a smaller branch predictor,
opportunistic (i.e., blind) load scheduling, a fully-associative IT, and oracle mis-integration suppression.

4.3  Sensitivity to Register Integration Configuration

In this section, we measure the sensitivity of register integration to the parameters of the mechanism itself.
Specifically, we consider the size and associativity of the IT, the number of additional physical registers
provided by the processor for holding squashed results, and the accuracy of the load integration suppres-
sion predictor (LISP). We explore variations in these parameters around our central configuration.

4.3.1  Integration Table Associativity and Size

A fully associative IT managed in FIFO fashion contains entries for the results of themost recently
squashedinstructions. It is these results that are most likely to be integrated. However, a fully associative
IT is impractical to build. In a low-associativity IT, PC conflicts may not permit the simultaneous presence
of entries for certain combinations of results. IT conflicts have two adverse effects. First, they effectively
evict entries for recently squashed results preventing their integration and the integration of dependent
results. Second, conflicts may allow entries for old squashed results to persist in the IT and become stale.
The longer stale entries are allowed to remain in the IT, the more likely they are to be (mis-)integrated. In

bzip2 crafty eon.c eon.k eon.r gap gcc gzip
DM Integrating instructions (M)   29.63  174.82    5.15   37.36   10.25   22.27   24.47 281.34

Mis-integrating instructions (K)   11.96  125.18    0.07    0.82    0.29    1.41   16.17 50.93
Execution time saved (%) 0.11 2.21 0.37 1.64 1.09 0.50 1.34 1.04

2
way

Integrating instructions (M)   39.32  202.71    6.98   48.89   13.40   31.08   32.57 462.77
Mis-integrating instructions (K)   15.06  174.30    0.33    4.08    1.06    5.43   32.31 277.51
Execution time saved (%) 0.14 2.64 0.75 2.01 1.31 0.71 1.75 1.49

4
way

Integrating instructions (M)   46.63  228.23    7.35   52.71   14.50   40.36   39.24  569.88
Mis-integrating instructions (K)   25.39  193.97    0.29    6.90    1.01   11.25   46.18  443.12
Execution time saved (%) 0.16 3.13 0.70 2.11 1.40 0.92 2.08 1.75

FA Integrating instructions (M)   66.45  243.14    8.45   58.40   16.76   46.38   45.53 631.75
Mis-integrating instructions (K)   29.06  233.49    0.27    7.34    1.06    8.08   51.75 366.57
Execution time saved (%) 0.33 3.32 0.94 2.15 1.55 1.08 2.64 2.88

mcf parser perl.d perl.s twolf vortex vpr.p vpr.r
DM Integrating instructions (M)    6.60   53.69  188.12  118.02   66.10   25.10   19.87   35.60

Mis-integrating instructions (K)    1.06   13.91    2.18    4.49    6.00    0.83    3.21    1.02
Execution time saved (%) 0.06 0.76 1.23 1.32 1.31 0.41 1.81 0.51

2
way

Integrating instructions (M)   16.83   92.61  244.26  144.66   76.31   31.27   34.76   77.77
Mis-integrating instructions (K)    2.57   40.33    9.82    9.78   16.16    1.47    2.02    2.11
Execution time saved (%) 0.13 1.09 1.62 1.55 2.09 0.41 3.82 1.39

4
way

Integrating instructions (M)   38.64  111.52  272.28  144.26   85.47   31.98   47.14   96.68
Mis-integrating instructions (K)   12.04   55.49   16.44    8.01   24.13    1.46    2.55    2.55
Execution time saved (%) 0.47 1.13 2.10 1.72 3.77 0.42 5.72 1.82

FA Integrating instructions (M)   55.40  132.45  276.08  143.51  116.96   32.05   50.37   99.41
Mis-integrating instructions (K)   12.16   65.48   21.03    3.18   45.23    1.42    2.07    2.72
Execution time saved (%) 0.96 1.52 2.08 1.79 4.38 0.43 6.56 1.94

TABLE 3. Integration Sensitivity to IT Associativity.
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this section, we measure the effect of IT associativity on integration performance as well as the effective-
ness of “simulating” high associativity using a large IT.

The effects of IT associativity on integration-based squash reuse are shown in Table 3. We show the results
of four experiments, using a direct-mapped (DM), 2-way set-associative, 4-way set-associative, and fully
associative (FA) ITs. All ITs have 1K entries. Rather than consume space with a presentation of full results
similar to that of Table 2, we summarize the results of each experiment using three metrics: total number of
integrating instructions, total number of mis-integrations, and overall reduction in execution time. Results
for our central configuration—the 4-way set-associative IT—are shown in bold. Absolute counts (rather
than percentages of total committed instructions) are used because the configurations are compared to each
other, not to the baseline non-integrating case. We will follow this convention for the rest of our sensitivity
analysis.

As expected, higher IT associativities increase the numbers of integrating instructions. Multiple effects are
at play here. First, increased associativity reduces conflicts and allows the IT to more closely approximate
its intended contents and store entries for the most recently squashed results. Second, higher associativities
allow the integration circuit to choose from a larger number of candidates per instruction, increasing the
probability of a successful match. It is important to note that these two manifestations of associativity—IT
eviction policy and integration circuit complexity—are not necessarily related. However, for the purposes
of this discussion we consider them together. Finally, recall that integration counts feed themselves via
higher-order integrations.

Along with the increase in integration counts comes an increase in the number of mis-integrations. How-
ever, the increase in successful integrations typically outweighs the increase in mis-integrations, resulting
in a general performance improvement. Of course, rules always have exceptions. Inperl.d, for instance,
going from a 4-way set associative IT to a fully associative IT increases integration counts by 2% and mis-
integration counts by 25%, resulting in performance degradation.

One curious phenomenon is that increased integration rates are sometimes accompanied bydecreasedmis-
integration rates. This phenomenon is especially evident in the transition from a 4-way set-associative IT to
a fully-associative IT (e.g.,gap, gzip, vortex). Mis-integration rates track integration rates as we increase

bzip2 crafty eon.c eon.k eon.r gap gcc gzip
256 Integrating instructions (M)   35.33  195.85    6.07   43.52   11.04   32.05   30.73  382.87

Mis-integrating instructions (K)   12.01  139.94    0.17    4.75    0.89    9.44   36.70  321.23
Execution time saved (%)    0.11    2.67    0.46    1.73    0.95    0.76    1.57    1.16

1K Integrating instructions (M)   46.63  228.23    7.35   52.71   14.50   40.36   39.24  569.88
Mis-integrating instructions (K)   25.39  193.97    0.29    6.90    1.01   11.25   46.18  443.12
Execution time saved (%) 0.16 3.13 0.70 2.11 1.40 0.92 2.08 1.75

4K Integrating instructions (M)   47.64  230.10    7.44   53.15   14.40   40.89   40.30  574.37
Mis-integrating instructions (K)   25.82  197.14    0.28    7.67    1.17   11.45   46.67  408.16
Execution time saved (%)    0.16    3.17    0.87    2.10    1.49    0.90    2.11    1.88

mcf parser perl.d perl.s twolf vortex vpr.p vpr.r
256 Integrating instructions (M)   31.20   69.55  224.89  106.32   73.21   27.78   40.24   71.86

Mis-integrating instructions (K)   10.38   39.90    5.76    2.43   19.09    1.42    2.68    2.57
Execution time saved (%)    0.43    0.60    1.88    1.40    3.14    0.38    4.67    1.39

1K Integrating instructions (M)   38.64  111.52  272.28  144.26   85.47   31.98   47.14   96.68
Mis-integrating instructions (K)   12.04   55.49   16.44    8.01   24.13    1.46    2.55    2.55
Execution time saved (%) 0.47 1.13 2.10 1.72 3.77 0.42 5.72 1.82

4K Integrating instructions (M)   38.64  117.87  283.56  144.21   86.88   32.03   47.12   97.94
Mis-integrating instructions (K)   11.95   57.19   13.95    2.98   22.53    1.44    2.59    2.61
Execution time saved (%)    0.47    1.21    2.13    1.77    3.81    0.43    5.73    1.85

TABLE 4. Integration Sensitivity to IT Size.
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associativity from 1 to 4 ways. The reason for this is that our simulated processor does not model cascaded
invalidations, resulting in stale IT entries and stale-entry mis-integrations. Quite simply, finite associativity
allows stale entries to persist in the IT while in a fully associative IT, these entries are systematically
evicted by entries for newer squashed results. Consequently, while using a fully associative IT increases
the number of mis-integrations due to store conflicts, it effectively eliminates mis-integrations due to stale
entries, resulting in lower overall mis-integration rates. The net change in mis-integrations is decided by
the dominant phenomenon. In general, load mis-integrations are more frequent than stale entry mis-inte-
grations (even with mis-integration suppression). However, in the three cases above, the opposite holds.

Ultimately, our results show that in our new formulation, a direct-mapped IT is almost completely ineffec-
tive at capturing and exploiting squash reuse. This due to frequent conflicts between entries for Active and
Squashed results. An associativity of 2 or 4 is required to obtain tangible benefit.

It is possible to reduce PC conflicts in a low-associativity IT by increasing IT size, spreading out previ-
ously conflicting entries over multiple sets. The main difference between a large IT with low associativity
and a smaller, high-associativity IT is that the latter can absorb conflicts between multiple instances of the
same instruction whereas the former cannot. This difference is on display in Table 4, which shows experi-
ments using 4-way set-associative ITs of three different sizes: 256, 1K, and 4K total entries. As the results
show, IT size is indeed “poor man’s” associativity; increasing the size of a low-associativity IT does reduce
conflicts and raise integration rates, but far less effectively than increasing the associativity. This is not a
surprise as a major source of conflicts are due to multiple instances of thesamestatic instruction. Increas-
ing IT size also does not reduce the incidence of stale-entry mis-integrations.

The results of these two experiments appear to contradict our initial findings [19], in which we claimed that
squash reuse was insensitive to IT associativity and only slightly more sensitive to IT size. The apparent
contradiction arises from the different roles played by IT associativity and size in our two implementa-
tions. In our initial design, the IT contained entries only for Squashed registers. High associativity was not
required to deal with conflicts between Active and Squashed registers because such conflicts were simply
not possible. In that design, associativity was only used to allow the integration circuit to choose from
among the most recentM squashed instances of a given instruction. However, squash reuse does not
exploit this capability since the most recent instance of any instruction is the one most frequently inte-
grated. In our new design, IT associativity is needed to avoid Squashed/Active IT conflicts and, hence, has
a much larger impact on performance.

One thing shared by our old and new results is that they both support our assertion that register integration
and squash reuse are properties of program structure. Benchmarks that fail to exploit squash reuse at mini-
mal integration configurations are oblivious to increases in IT associativity and size. More integration
resources do not change the fact that the product of program and processor does not produce many valid
integration candidates. On the other hand, programs whose structure does allow them to exploit integra-
tion, can draw additional benefit from additional integration resources.

4.3.2  Number of Physical Registers

While the size and associativity of the IT control the number of squashed results that can ultimately be
integrated, another direct method of constraining (or unconstraining) register integration is by varying the
number of physical registers in the machine. Recall, no invariants are enforced between IT entries and
physical registers. In a conventional processor, the number of physical registers needed to avoid structural
renaming stalls is equal to the number of architectural registers plus the number of instructions that can
simultaneously be in-flight. When presenting our central configuration, we asserted that this number suf-
fices to support squash reuse effectively. Here, we support this assertion with results that measure integra-
tion’s sensitivity to increases in physical register counts.

Table 5 below summarizes the results of three experiments, using 0, 64, and 256 additional (i.e., over the
minimum required to sustain rename stall-free execution) physical registers. Each experiment uses a 1K
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entry, 4-way set-associative IT. As we counter-intuitively claimed, with a few exceptions, increasing the
number of physical registers available for holding squashed results generally degrades performance. This
behavior is consistent with our previous discussion of mis-integrations due to stale IT entries. Squash reuse
primarily targets the most recently squashed results. To hold these results for integration, only a few addi-
tional registers, if any, are needed. Adding physical registers beyond this minimally required amount does
not significantly raise integration rates, but it does allow older squashed results, the ones most likely to
become stale and result in mis-integrations, to persist in the IT and cause subsequent mis-integrations. In
fact, setting the number of physical registers to the minimum—architectural registers plus reorder buffer
size—has the beneficial effect of purging all stale entries every time the reorder buffer fills.

4.3.3  Load Integration Suppression Configuration

The task of the load integration suppression predictor (LISP) is to suppress likely mis-integrations. The
LISP must strike a delicate balance. Failure to predict and suppress many eventual mis-integrations may
result in performance degradation, as the cost of each mis-integration is high. At the same time, overzeal-
ous integration suppression—in the extreme, we could suppress the integration of all loads—would reduce
successful integration rates beyond the point of utility. In Table 6, we measure the effectiveness of our
aggressive suppression mechanism by comparing it to three other suppression configurations: a perfect
mechanism that suppresses all mis-integrations and only mis-integrations, no mechanism at all, and a small
16-entry LISP that uses no path history.

The table shows two striking results. First, mis-integration suppression is a crucial component of register
integration as we have formulated it. Without suppression, mis-integration rates can rise to as high as one
mis-integration per one hundred successful integrations. Due to the high cost of a mis-integration, even this
seemingly small ratio effectively swamps the benefits of correct integration and results in appreciable per-
formance degradation in three quarters of our benchmarks. A second result shown in the table is that, while
even a simple LISP reduces mis-integration rates substantially, the use of path history in making suppres-
sion decisions and sufficient predictor size to support multiple entries per instruction are important compo-
nents of successful suppression.

bzip2 crafty eon.c eon.k eon.r gap gcc gzip
0 Integrating instructions (M)   46.63  228.23    7.35   52.71   14.50   40.36   39.24  569.88

Mis-integrating instructions (K)   25.39  193.97    0.29    6.90    1.01   11.25   46.18  443.12
Execution time saved (%) 0.16 3.13 0.70 2.11 1.40 0.92 2.08 1.75

64 Integrating instructions (M)   49.06  235.73    7.65   54.54   14.97   42.52   40.74  588.96
Mis-integrating instructions (K)   38.87  279.10    0.52   10.02    1.91   15.58   56.33  481.49
Execution time saved (%)    0.15    2.88    0.64    2.12    1.40    0.95    1.99    1.80

256 Integrating instructions (M)   50.42  247.02    8.04   57.62   15.63   45.48   42.16  596.27
Mis-integrating instructions (K)   79.01  502.11    1.01   31.61    4.62   22.38   77.42  563.33
Execution time saved (%)    0.07    2.18    0.12    1.85    1.26    0.89    1.78    1.77

mcf parser perl.d perl.s twolf vortex vpr.p vpr.r
0 Integrating instructions (M)   38.64  111.52  272.28  144.26   85.47   31.98   47.14   96.68

Mis-integrating instructions (K)   12.04   55.49   16.44    8.01   24.13    1.46    2.55    2.55
Execution time saved (%) 0.47 1.13 2.10 1.72 3.77 0.42 5.72 1.82

64 Integrating instructions (M)   39.97  118.86  283.43  155.44   87.09   33.72   48.35  102.72
Mis-integrating instructions (K)   12.47   72.00   43.02    7.83   28.85    2.35    3.09    3.98
Execution time saved (%)    0.46    1.08    2.03    1.68    2.47    0.43    5.86    1.88

256 Integrating instructions (M)   40.29  123.60  290.72  157.45   88.43   34.96   49.49  104.65
Mis-integrating instructions (K)   13.68   99.90   94.42   15.34   45.78    5.86   10.07    9.48
Execution time saved (%)    0.56    0.97    1.84    1.70    2.01    0.37    5.73    1.88

TABLE 5. Integration Sensitivity to Number of Additional Physical Registers.
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Even our aggressive suppression configuration leaves some potential performance gain unrealized as is
shown via comparison to an ideal suppression mechanism. For programs that can structurally benefit from
squash reuse, ideal suppression can boost performance by as much as 2% over our realistic but aggressive
implementation. Performance improvements are most dramatic for programs (e.g.,gzipandvpr.r) in which
realistic suppression is overzealous and suppresses many correct integrations. Although not shown, the
combination of a fully associative IT (whose benefits we discussed in a previous section) and oracle sup-
pression is powerful and can yield consistent performance improvements in the 5% to 8% range. Obvi-
ously, this is not a practical combination.

In addition to setting an upper bound on mis-integration suppression performance, the ideal suppression
experiment is an interesting data point in itself. Absent mis-integrations, its statistics measure the primary
effects of squash reuse directly with no pollution from higher-order integrations. Incrafty, eon.candperl.s,
oracle suppression reduces the total number of integrating instructions. As we explained, this implies that
some of the integrations in our baseline measurement were higher-order integrations. However, in general,
perfect suppression increases integration counts, supporting our previous claim that higher-order integra-
tions are rare and their effects are small.

4.4  Sensitivity to Base Microarchitecture Configuration

We conclude our evaluation with a discussion of the sensitivity of register integration-based squash reuse
to the parameters of the base microarchitecture. Specifically, we are interested in its sensitivity to parame-
ters that may impact either the number of potential integrations or the benefit of each individual successful
integration. In the interest of space, we only summarize our observations and some important results.

bzip2 crafty eon.c eon.k eon.r gap gcc gzip
None Integrating instructions (M)   77.13  233.06    7.95   55.28   15.20   42.17   42.79  891.08

Mis-integrating instructions (K) 1929.73  542.53   30.90  148.54   43.66  743.37  237.37 9213.74
Execution time saved (%) -2.39 2.39 -1.44 0.42 -0.26 -0.42 0.68 -4.91

Small
No
Hist

Integrating instructions (M)   50.26  230.75    7.60   54.33   14.93   39.51   40.90  557.03
Mis-integrating instructions (K)  327.54  336.95    0.44   63.34    4.21   11.82  137.51 1327.68
Execution time saved (%)   -0.26    2.75    0.46    1.27    1.29    0.90    1.23    0.94

Large
Hist

Integrating instructions (M)   46.63  228.23    7.35   52.71   14.50   40.36   39.24  569.88
Mis-integrating instructions (K)   25.39  193.97    0.29    6.90    1.01   11.25   46.18  443.12
Execution time saved (%) 0.16 3.13 0.70 2.11 1.40 0.92 2.08 1.75

Ideal Integrating instructions (M)   49.13  227.99    7.22   53.90   14.50   41.14   40.87  787.28
Mis-integrating instructions (K)    0.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00
Execution time saved (%) 0.25 3.87 1.44 2.44 1.65 1.00 2.83 3.30

mcf parser perl.d perl.s twolf vortex vpr.p vpr.r
None Integrating instructions (M)   42.37  127.79  302.23  146.12   86.73   28.12   50.75  136.85

Mis-integrating instructions (K)  399.33 1576.79 1976.57  102.99  158.26   82.59  318.47 1130.53
Execution time saved (%) -0.16 -3.65 -0.90 1.66 3.12 -0.37 -1.39 -3.65

Small
No
Hist

Integrating instructions (M)   38.49  111.54  282.09  142.44   85.93   32.22   47.65   97.49
Mis-integrating instructions (K)   33.16   90.26  306.86    6.23   93.83   35.20  129.00   35.51
Execution time saved (%)    0.40    0.87    1.36    1.73    3.06   -0.06    2.68    1.62

Large
Hist

Integrating instructions (M)   38.64  111.52  272.28  144.26   85.47   31.98   47.14   96.68
Mis-integrating instructions (K)   12.04   55.49   16.44    8.01   24.13    1.46    2.55    2.55
Execution time saved (%) 0.47 1.13 2.10 1.72 3.77 0.42 5.72 1.82

Ideal Integrating instructions (M)   41.06  118.28  282.63  143.77   85.85   32.11   47.63  107.96
Mis-integrating instructions (K)    0.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00
Execution time saved (%) 0.53 1.99 2.28 1.97 3.86 0.46 5.86 2.12

TABLE 6. Integration Sensitivity to Mis-Integration Suppression Mechanism.
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As expected, the performance impact of squash reuse varies with the level of squashing activity in the pro-
cessor. The use of a smaller branch predictor and a more aggressive load-speculation policy increases the
squash rate and the opportunities for squash reuse to bring its powers to bear. Similarly, a larger branch
predictor and smarter load-scheduler will reduce the opportunity for reuse. The effects of changes in both
directions are dampened by the proportional increases and decreases in mis-integrations.

In addition to changes that vary squash frequency, we are concerned with parameter variations that influ-
ence the number of reuse candidates per squash and the benefit of a single reuse instance. Unfortunately,
parameters that positively affect one negatively affect the other. An example of one such parameter is the
number of reservation stations the processor has. A large number of reservation stations allows more re-
convergent path instructions to complete prior to the resolution of a branch. Hence increasing the number
of reservation stations typically results in higher integration rates. However, one of the benefits of integra-
tion is a reduction in contention for reservation stations. Increasing the number of reservation stations nat-
urally reduces contention and thus relaxes one of the constraints which integration actively attacks.

There is similar interplay between integration and changes in processor width and pipeline depth. On one
hand, a wider processor completes more instructions prior to the resolution of a mispredicted branch, gen-
erating more integration candidates. On the other, it has fewer execution bandwidth constraints and bene-
fits less (relatively) from the freeing of an execution slot that results from a successful integration.
Pipelining has similar effects. On one hand, increased pipelining lengthens the branch resolution latency,
increasing the number of instructions that can be executed along mis-speculated paths. On the other hand,
it slows down the execution ofall instructions, and reduces the number of instructions along mispredicted
paths that can be completed pre-resolution. Pipelining also affects the benefit associated with each individ-
ual integration. Superpipelining post-integration stages—scheduling and register-read—magnifies the
effects of integration’s ability to collapse dependent chains of instructions and instantly resolve branches.
Superpipelining pre-integration stages—fetch, decode and rename itself—reduces their relative impact.

In contrast with our initial evaluation [19], we do not investigate the negative impact of register integration
on pipelining. In our first presentation, we conceded that the complexity of the integration circuit may
require adding stages to register renaming and that increasing the size of the physical register file may
require additional register read stages. However, we have subsequently observed that much of integration’s
machinery can be moved to earlier pipeline stages, such that the amount of new logic that must be serial-
ized with conventional register renaming is small. At the same time, our new formulation allows the IT and
physical register file to be sized independently and, as the results of Section 4.3.2 show, a large fraction of
the benefit of register integration may be achieved without adding any physical registers. In fact, register
integration may allow register access to be implemented in fewer pipeline stages, as successful integration
reduces register read and write rates. We have not actually experimented with reduced register file ports.

One parameter that one-sidedly changes the character of integration and squash reuse is the size of the
reorder buffer, which controls the degree to which a program is allowed to speculate and, more impor-
tantly, mis-speculate. A small reorder buffer will not allow a program to mis-speculatively execute into the
post-branch re-convergent region, the region that produces the eventual integration candidates. A larger
reorder buffer, combined with a long pipeline which lengthens the branch misprediction resolution latency,
will allow more of the re-convergent region to be fetched and executed resulting in more integration candi-
dates and higher integration rates. Our baseline configuration, with a 256 entry buffer, is already aggressive
to the point where it rarely fills. Our experiments do show that integration is slightly less effective with
smaller buffers. Reduced mis-integration, which tracks reduced integration, is again a mitigating effect.

5  Related Work

The termsquash reusewas introduced to describe one of the tasks performed byInstruction Reuse (IR)
[21]. IR is a table-based technique for avoiding the execution of an instruction that has been previously
executed with the same inputs. In addition to squash reuse, in which the reused value comes from the same
instance of the instruction that has merely been squashed, IR implementsgeneral reuse, in which the
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reused value comes from a different (not necessarily squashed) previous instance that just happens to have
the same input operands. Integration implements only squash reuse because it requires that the value
already exist in the register file and that the physical register inputs of the squashed instruction match
exactly with the inputs of the instruction it will “replace”. IR lifts the first constraint by storing the
squashedvalueinside the lookup table (which is called areuse bufferor RB) and writing it into the register
file when reuse is detected. It lifts the second constraint by basing the reuse test itself is oninstance-inde-
pendent architectural quantitieslike values or logical register names, rather thaninstance-dependent
microarchitecturalones like physical register numbers. IR is more widely applicable than register integra-
tion; it can exploit general reuse and be implemented on any microarchitecture, but has a somewhat com-
plex implementation. A value-based reuse test implies the need to read registers, which complicates the
register file and moves IR further back in the pipeline, reducing its impact. An architectural-name-based
reuse test removes the need to read registers but requires an explicit dependence-tracking scheme within
the RB so as not to become too conservative. Both IR forms require additional write data-paths into the
register file. In integration, the reused values are already stored in physical registers so no additional regis-
ter data-paths to read or write any values are required. The physical register-based nature of the reuse test
implements dependence-tracking naturally. TheDynamic Control Independence (DCI)buffer [3] is an
architectural name-based squash reuse implementation that uses a shadow reorder buffer instead of an RB.

We have alluded to the interplay between integration andselective squashing[7, 12, 16, 17], which allows
instruction instances to execute multiple times “in-place” before retirement. Selective squashing is an
effective way of dealing with data mis-speculations, in which the correct instructions are already in the
machine. Selective squashing allows the penalty of squash and re-fetch to be avoided at the cost of keeping
instructions in the reservation-station longer and increasing reservation-station contention. Selective
squashing, however, cannot salvage work lost to control mis-speculation. Integration and selective squash-
ing are duals. Both techniques salvage instructions by keeping around information for longer than is con-
ventionally required, physical registers for integration and reservation stations for selective squashing.
However, while selective squashing actively targets instructions dependent on the mis-speculation, integra-
tion waits for all squashed instructions to be re-processed then picks out the ones that were actually mis-
speculation independent.

Like register integration, unified renaming [10] uses map table manipulations to implement result sharing
within the physical register file. In contrast with integration which uses dataflow properties to detect reuse
scenarios, unified renaming finds sharing and reuse opportunities by detecting operation sequences that
compriseidentity operations, i.e., produce outputs identical to their inputs. Identity operations may be reg-
ister moves, communicating store-load pairs, or even arbitrary length, arithmetically-trackable instruction
sequences. Due to their similar mechanics, it is likely that register integration and unified renaming can be
implemented together and perhaps even combined in an interesting way.

6  Conclusions and Future Work

We presentregister integration, a technique for salvaging and reusing valid results that were needlessly
discarded and subsequently re-executed due to the sequential nature of speculation and mis-speculation
recovery. Integration is a discipline that allows speculative results to remain in the physical register file past
recovery events with the hope that they are control- and data- independent of the mis-speculation event in
question and can be used once the particulars of that mis-speculation have been resolved. Integration logic
is implemented as a modification to conventional register renaming that recognizes the validity of
squashed results using their data-dependences. Successful integration spares the processor from having to
re-execute the corresponding instruction in the out-of-order execution engine.

This paper presents a new formulation for register integration. This formulation requires only a small
cache-like structure called the integration table (IT), an integration circuit which is added to the register
renaming logic, and a modest in-order pre-retirement re-execution facility similar to DIVA [1, 2]. No
changes to the fetch or execution engines themselves are necessary and the integration process itself does
not require the reading or writing of any register values, only map table manipulations are used.
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Our evaluation shows that this new integration formulation has the potential for performance improve-
ments of up to 6% at configurations representative of next-generation processors. These improvements are
achieved through a combination of reduction in the consumption of execution and fetch bandwidths, the
collapsing of dependent instruction chains, and the acceleration of branch resolution. Our benchmarks
reuse between 20% and 40% of all squashed results, representing 1% to 16% of retired instructions.

Perhaps more important than integration’s performance characteristics are its mis-speculation reduction
characteristics. Integration reduces the overall level of wasted work performed in the processor. It reduces
the number of instructions executed by reusing squashed computations and its acceleration of branch reso-
lution reduces the number of instructions fetched along mis-speculated paths. According to our results, the
number of instruction fetches saved can reach 6% and the number of instruction executions saved, 15%.
This fact suggests integration applications in reducing resource contention in multithreaded processors
[23] or in reducing energy consumption [13]. Of course, the latter requires that the power characteristics
of integration itself be acceptable, something that has not been investigated, but for which we have argued.

An interesting future direction for register integration lies in its ability to support new speculation models.
As we have presented it, integration reimposes lost sequential semantics on a set of instructions using only
their data-dependences. However, integration can impose sequential semantics on a set of instructions that
werenot executed sequentially in the first place. One application of this capability is a new form of specu-
lation, calleddata-driven speculation, in which speculative execution proceeds along statically annotated
data-dependence arcs with no regard to conventional sequencing. Integration is used subsequently to
sequence the results into a control-driven form required by the architectural interface. In fact, integration
was conceived during the course of our investigation of this new speculation model [18, 20].

Acknowledgements

The initial work was supported in part by National Science Foundation grants MIP-9505853, CCR-
9900584, and EIA-0071924, donations from Intel Corp. and Sun Microsystems, the University of Wiscon-
sin Graduate School and an Intel Ph.D Fellowship. More recent work has been supported by the University
of Pennsylvania. The authors thank the anonymous reviewers, whose comments helped improve this
manuscript.

References

[1] T. Austin. “DIVA: A Reliable Substrate for Deep Submicron Microarchitecture Design.” InProc. 32nd Inter-
national Symposium on Microarchitecture, pages 196–207, Nov. 1999.

[2] S. Chatterjee, C. Weaver, and T. Austin. “Efficient Checker Processor Design.” InProc. 33rd International
Symposium on Microarchitecture, pages 87–97, Dec. 2000.

[3] Y. Chou, J. Fung, and J. Shen. “Reducing Branch Misprediction Penalties via Dynamic Control Independence
Detection.” InProc. 1999 International Conference on Supercomputing, pages 109–118, Jun. 1999.

[4] G. Chrysos and J. Emer. “Memory Dependence Prediction using Store Sets.” InProc. 25th International Sym-
posium on Computer Architecture, pages 142–153, Jun. 1998.

[5] K. Diefendorf. “K7 Challenges Intel.”Microprocessor Report, 12(14), Nov. 1998.
[6] K. Diefendorf. “HAL Makes SPARCS Fly.”Microprocessor Report, 13(5), Nov. 1999.
[7] M. Franklin. The Multiscalar Architecture. PhD thesis, University of Wisconsin-Madison, Madison, WI

53706, Nov. 1993.
[8] P. Glaskowsky. “Pentium 4 (Partially) Previewed.”Microprocessor Report, 14(8), Aug. 2000.
[9] L. Gwenapp. “Intel’s P6 Uses Decoupled Superscalar Design.”Microprocessor Report, 9(2), Feb. 1995.
[10] S. Jourdan, R. Ronen, M. Bekerman, B. Shomar, and A. Yoaz. “A Novel Renaming Scheme to Exploit Value

Temporal Locality Through Physical Register Reuse and Unification.” InProc. 31st International Symposium
on Microarchitecture, pages 216–225, Dec. 1998.

[11] R. Kessler. “The Alpha 21264 Microprocessor.”IEEE Micro, 19(2), Mar./Apr. 1999.
[12] M. Lipasti.Value Locality and Speculative Execution. PhD thesis, Department of Electrical and Computer En-

gineering, Carnegie-Mellon University, May 1997.
[13] S. Manne, A. Klauser, and D. Grunwald. “Pipeline Gating: Speculation Control for Energy Reduction.” In



ROTH & SOHI

28

Proc. 25th Annual International Symposium on Computer Architecture, pages 132–141, Jun. 1998.
[14] A. Moshovos, S. Breach, T. Vijaykumar, and G. Sohi. “Dynamic Speculation and Synchronization of Data De-

pendences.” InProc. 24th International Symposium on Computer Architecture, pages 181–193, Jun. 1997.
[15] A. Moshovos and G. Sohi. “Memory Dependence Speculation Tradeoffs in Centralized, Continuous-Window

Superscalar Processors.” InProc. 6th Annual International Symposium on High-Performance Computer Archi-
tecture, pages 301–312, Feb. 2000.

[16] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. Smith. “Trace Processors.” InProc. 30th International Sympo-
sium on Microarchitecture, pages 138–148, Dec. 1997.

[17] E. Rotenberg and J. Smith. “Control Independence in Trace Processors.” InProc. 32nd International Sympo-
sium on Microarchitecture, pages 4–15, Nov. 1999.

[18] A. Roth.Pre-Execution via Speculative Data Driven Multithreading. PhD thesis, Computer Sciences Depart-
ment, University of Wisconsin-Madison, Aug. 2001.

[19] A. Roth and G. Sohi. “Register Integration: A Simple and Efficent Implementation of Squash Re-Use.” In
Proc. 33rd Annual International Symposium on Microarchitecture, Dec. 2000.

[20] A. Roth and G. Sohi. “Speculative Data-Driven Multithreading.” InProc. 7th International Symposium on
High-Performance Computer Architecture, pages 37–48, Jan. 2001.

[21] A. Sodani and G. S. Sohi. “Dynamic Instruction Reuse.” InProc. 24th International Symposium on Computer
Architecture, pages 194–205, Jun 1997.

[22] P. Song. “IBM’s Power3 to Replace P2SC.”Microprocessor Report, 11(15), Nov. 1997.
[23] D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, and R. Stamm. “Exploiting Choice: Instruction Fetch and Issue

on an Implementable Simultaneous Multithreading Processor.” InProc. 23rd International Symposium on
Computer Architecture, pages 191–202, May 1996.

[24] K. Yeager. “The MIPS R10000 Superscalar Microprocessor.”IEEE Micro, Apr. 1996.
[25] A. Yoaz, M. Erez, R. Ronen, and S. Jourdan. “Speculation Techniques for Improving Load-Related Instruction

Scheduling.” InProc. 26th Annual International Symposium on Computer Architecture, pages 42–53, May
1999.


