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Abstract

As microprocessor designs continue to evolve, many optimizations reach a point of diminish-
ing returns. We introduce HLS, a hybrid processor simulator which uses statistical models and
symbolic execution to evaluate design alternatives. This simulation methodology enables quick
and accurate generation of contour maps of the performance space spanned by design parameters.
We validate the accuracy of HLS through correlation with existing cycle-by-cycle simulation tech-
niques and current generation hardware. We demonstrate the power of HLS by exploring design
spaces defined by two parameters: code properties and value prediction. These examples motivate
how HLS can be used to set design goals and individual component performance targets.

1. Introduction

In this paper, we introduce a new methodology of study for microprocessor design. This method-
ology involves statistical profiling of benchmarks using a conventional simulator, followed by the
execution of a hybrid simulator that combines statistical models and symbolic execution. Using this
simulation methodology, it is possible to explore changes in architectures and compilers that would
be either impractical or impossible using conventional simulation techniques.

We demonstrate that a statistical model of instruction and data streams, coupled with a structural
simulation of instruction issue and functional units, can produce instructions per cycle (IPC) results
that are within 5-7% of cycle-by-cycle simulation. Using this methodology, we are able to generate
statistical contour maps of microprocessor design spaces. Many of these maps verify our intuitions.
More significantly, they allow us to more firmly relate previously decoupled parameters, including:
instruction fetch mechanisms, branch prediction, code generation, and value prediction.

This work was originally presented in a short paper [1]. While the original version focused
upon only one “average” application (perl) in the bulk of our design space explorations, this paper
presents a broader range of data points for all design parameters examined. In addition to perl, xlisp
and vortex are examined in depth – covering the extremes of instruction cache and branch predictor
behavior in the SPEC95 suite. Novel material on the relationship of IPC variance and statistical
accuracy is also presented. Finally, a more exhaustive set of results is included.

c
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Figure 1: Simulated Architecture

In the next section, we describe the HLS (High Level Simulator) simulator. Next in Section 3 we
validate HLS against conventional simulation techniques. In Section 4, the HLS simulator is used to
explore various architectural parameters. Then in Section 5, we discuss our results and summarize
some of the potential pitfalls of this simulation technique. In Section 6, we discuss related work in
this field. Finally, future work is discussed in Section 7, and Section 8 presents the conclusions.

2. HLS: A Statistical Simulator

HLS is a hybrid simulator which uses statistical profiles of applications to model instruction and
data streams. HLS takes as input a statistical profile of an application, dynamically generates a code
base from the profile, and symbolically executes this statistical code on a superscalar microprocessor
core. The use of statistical profiles greatly enhances flexibility and speed of simulation. For exam-
ple, we can smoothly vary dynamic instruction distance or value predictability. This flexibility is
only possible with a synthetic, rather than actual, code stream. Furthermore, HLS executes a statis-
tical sample of instructions rather than an entire program, which dramatically decreases simulation
time and enables a broader design space exploration which is not practical with conventional simu-
lators. In this section, we describe the HLS simulator, focusing on the statistical profiles, method of
simulated execution, and validation with conventional simulation techniques.

2.1 Architecture

The key to the HLS approach lies in its mixture of statistical models and structural simulation. This
mixture can be seen in Figure 1, where components of the simulator which use statistical models
are shaded in gray. HLS does not simulate the precise order of instructions or memory accesses in
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Parameter Value

Instruction fetch bandwidth 4 inst.
Instruction dispatch bandwidth 4 inst.
Dispatch window size 16 inst.
Integer functional units 4
Floating point functional units 4
Load/Store functional units 2
Branch units 1
Pipeline stages (integer) 1
Pipeline stages (floating point) 4
Pipeline stages (load/store) 2
Pipeline stages (branch) 1
L1 I-cache access time (hit) 1 cycle
L1 D-cache access time (hit) 1 cycle
L2 cache access time (hit) 6 cycles
Main memory access time (latency+transfer) 34 cycles
Fetch unit stall penalty for branch mis-predict 3 cycles
Fetch unit stall penalty for value mis-predict 3 cycles

Table 1: Simulated Architecture configuration

a particular program. Rather, it uses a statistical profile of an application to generate a synthetic
instruction stream. Cache behavior is also modeled with a statistical distribution.

Once the instruction stream is generated, HLS symbolically issues and executes instructions
much as a conventional simulator does. The structural model of the processor closely follows that
of the SimpleScalar tool set [2], a widely used processor simulator. This structure, however, is
general and configurable enough to allow us to model and validate against a MIPS R10K processor
in Section 3.2.

The overall system consists of a superscalar microprocessor, split L1 caches, a unified L2 cache,
and a main memory. The processor supports out-of-order issue, dispatch and completion. It has five
major pipeline stages: instruction fetch, dispatch, schedule, execute, and complete. The similar-
ity to SimpleScalar is not a coincidence: the SimpleScalar tools are used to gather the statistical
profile needed by HLS. We will also compare results from SimpleScalar and HLS to validate the
hybrid approach. The simulator is fully programmable in terms of queue sizes and inter-pipeline
stage bandwidth; however, the baseline architecture was chosen to match the baseline SimpleScalar
architecture. The various configuration parameters are summarized in Table 1.

2.2 Statistical profiles

In order to use the HLS simulator, an input profile of a real application must first be generated.
Once the profile is generated, it is interpreted, a synthetic code sample is constructed, and this code
is executed by the HLS simulator. Since HLS is probability-based, the process of execution is
usually repeated several times in order to reduce the standard deviation of the observed IPC. This
overall process flow is depicted in Figure 2.

Statistical data collection of actual benchmarks is performed in the following manner:
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Code Binary

sim-outorder

sim-stat

Stat profile HLSStat-binary

Figure 2: Simulation process

Value perl compress gcc go ijpeg li m88ksim vortex

Basic block size (�) 5.21 4.69 4.93 5.96 6.26 4.39 6.25 5.78
Basic block size (�) 3.63 4.91 4.57 5.16 12.65 3.04 5.33 5.54
Integer Instructions 30% 42% 38% 51% 53% 34% 54% 31%
FP Instructions 1% <1% 0% 0% 0% 0% 0% 0%
Load Instructions 31% 22% 27% 23% 22% 26% 21% 26%
Store Instructions 18% 12% 15% 8% 10% 17% 9% 25%
Branch Instructions 19% 21% 20% 17% 16% 23% 16% 18%
Branch Predictability 91.4% 86.3% 87.6% 81.8% 90.0% 87.9% 91.8% 97.4%
L1 I-cache hit rate 96.4% 99.9% 93.7% 95.0% 99.1% 99.9% 94.1% 90.2%
L1 D-cache hit rate 99.9% 84.6% 97.8% 96.6% 99.1% 98.4% 99.6% 97.8%
L2 cache hit rate 99.9% 99.1% 97.3% 96.9% 94.5% 99.8% 99.1% 97.6%

Table 2: Statistical baseline parameters for SPECint95 (ref input, first 1 billion instructions)

� The program code is compiled and a conventional binary is produced. This binary is targeted
for the SimpleScalar tool suite.

� The binary is run on a modified SimpleScalar simulator. The statistical profile consists of the
basic block size and distribution and a histogram of the dynamic instruction distance between
instructions for each major instruction type (integer, floating-point, load, store, and branch).
This dynamic instruction distance forms a critical aspect of the statistical profile and will be
discussed further in this section.

� The binary is also run on a standard SimpleScalar simulator. Here, statistics about cache
behavior and branch prediction accuracy are collected.

These steps were performed on the SPECint95 benchmark suite. A summary of the results (less
dynamic dependence information) is presented in Table 2. Note that the average basic block size is
around 5 instructions, and the wide variability in each of these averages (as indicated by the high
standard deviation). This variability was modeled in the simulator.

Across most benchmarks, we found a relatively high branch predictability of 86-91%. This fig-
ure is a combination of both correctly predicted branches using the 2-level bimodal branch predictor
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and those that were statically determined (such as jumps). The exception is the go benchmark which
has very poor predictor performance.

Table 2 shows that two distinctive L1 I-cache behaviors are occurring. The compress, ijpeg, and
xlisp benchmarks have L1 I-cache hit rates greater than 99%, while gcc, m88ksim, perl and go have
I-cache hit rates greater than 90%.

Dynamic instruction distance (DID), or the distance between an instruction and the instruc-
tions that are dependent upon it within the dynamic instruction stream, is a significant statistical
component in the performance of an application. Intuitively, longer DID permits more overlap of
instructions within the execution core of the processor. In order to correctly model a superscalar
microprocessor, HLS must use DID information from real programs.

The DID information for the xlisp, perl and vortex SPECint95 benchmark is presented in Fig-
ure 3. (Although the DID is program dependent, space considerations permit us to only illustrate
the consolidated DID information for only these three benchmarks.) Figure 3 illustrates that the
DID information for an application might be parameterizable using an exponential formulation.
However, we found DID to be a critical factor in the accuracy of HLS. Hence, we chose to directly
extract a histogram from SimpleScalar of DID information. Note that for each instruction type, two
histograms of DID are utilized – one for each input register dependence.

2.3 Statistical Code Generation

Once the statistical profile is generated, the first step in the simulation process is to generate the
symbolic code sample. This symbolic code consists of instructions contained in basic blocks that
are linked together into a static program flow-control graph, very much like conventional code. The
difference is in the instructions themselves. Instead of containing actual arguments, each “instruc-
tion” contains the following set of statistical parameters:

� Functional unit requirements: these are described by a single parameter that specifies which
functional unit is required inside the execution core of the processor to complete the instruc-
tion. This requirement is statically assigned to each instruction at code generation time and
the distribution of functional unit requirements follows the breakdown of instruction types as
shown in Table 2. This is done on a program-by-program basis.

� L1I-p, L1D-p, L2I-p, L2D-p: The L1 I-cache, L1 D-cache and L2 cache behavior is classified
into four normal distributions with a mean centered around the hit rate gathered from direct
program simulation using SimpleScalar. Although the simulator permits the L2 cache to
be split, for this study L2I-p and L2D-p are set equal. This corresponds to the baseline
SimpleScalar configuration.

� Dynamic instruction distances: These parameters are determined from the histogram profile
obtained from simulation with SimpleScalar. They determine which instructions the current
instruction is dependent upon, in a dynamic sense. These are not linked statically, but rather
only the distance is stored. For instance, instead of an instruction containing explicit register
references such as r2 or r7, dependence distances such as 4 and 1 are stored indicating the
instruction depends on the 4th and 1st instruction back in the instruction stream. As instruc-
tions are fetched, the exact dependencies are resolved at execution-time. Care is taken in the
code generator to prevent the DID from pointing to a store or a branch, which would make
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Figure 3: Dynamic instruction distances
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Figure 4: Simulation IPC convergence time (cycles)

an instruction dependent upon another instruction that in real code would not ordinarily form
the basis for a dependence.

Finally, each basic block is of a size determined by the normal distribution of code sizes gathered
from simulation with SimpleScalar. Each basic block terminates with a branch, and the predictabil-
ity of that branch is assigned by the code generator based upon the observed predictability from
direct simulation. The various branch prediction accuracies and basic block size parameters for
each application are shown in Table 2.

2.4 Execution

Execution of the HLS simulator is similar to a conventional simulator. The instruction fetch stage
interacts with the branch predictor and I-cache system to fetch “instructions” and send them to the
dispatch stage. The dispatch stage interprets these instructions and sends them to the reservation
stations. Once all input dependencies have been resolved, the instruction moves from the reserva-
tion unit to an available functional unit pipeline. After executing in a functional unit, the result is
“posted” to the completion unit if a result bus is available.

The observed IPC from HLS converges quickly during execution. Figure 4 depicts the IPC
within HLS as instructions flow through the processor core for the first ten-thousand simulated
machine cycles. Note that IPC rapidly settles down after the first one-thousand cycles, and after
six-thousand cycles remains relatively constant.

The structural resources within the statistical simulator are sized to match the structural re-
sources within the sim-outorder SimpleScalar simulator. This provides the basis for the validation
of HLS using SimpleScalar, as well as the use of SimpleScalar as a source of program statistical
profiles.

3. Validation and Limitations

Once a statistical profile is generated, that profile is executed several times and an average in-
structions per cycle (IPC) is calculated. The IPC is then used to gauge the relative performance
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Figure 5: Simulated code example

Benchmark Simple- HLS HLS Error
scale IPC IPC IPC �

perl 1.10 1.12 0.03 2.3%
compress 1.70 1.76 0.05 3.2%
gcc 0.89 0.93 0.04 4.4%
go 0.87 0.86 0.02 0.1%
ijpeg 1.67 1.74 0.04 3.7%
li 1.40 1.38 0.07 1.8%
m88ksim 1.32 1.30 0.04 1.7%
vortex 0.87 0.83 0.02 4.8%

Table 3: Correlation between SimpleScalar and HLS Simulators for SPECint95 (test input)
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Benchmark Simple- HLS HLS Error
scale IPC IPC IPC �

perl 1.27 1.32 0.05 4.2%
compress 1.18 1.25 0.06 5.5%
gcc 0.92 0.96 0.03 3.9%
go 0.94 1.01 0.04 6.8%
ijpeg 1.67 1.73 0.06 3.9%
li 1.62 1.50 0.06 7.2%
m88ksim 1.16 1.14 0.03 1.5%
vortex 0.87 0.83 0.03 5.1%

Table 4: Correlation between SimpleScalar and HLS Simulators for SPECint95 (ref input)

Benchmark R10K HLS HLS Error
IPC IPC IPC �

perl 1.01 1.09 0.05 7.8%
compress 0.70 0.69 0.04 2.6%
gcc 0.93 0.96 0.05 3.8%
go 0.99 0.98 0.06 0.9%
ijpeg 1.45 1.40 0.09 4.0%
li 0.85 0.90 0.07 6.0%
m88ksim 1.15 1.15 0.08 0.1%
vortex 0.83 0.82 0.06 1.0%

Table 5: Correlation between MIPS R10k and HLS Simulators for SPECint95 (ref input)

differences between two experiments. It is important, however, to validate this simulation technique
and ensure that the IPC reported by HLS is relevant. Furthermore, the statistical model is not per-
fect. Clearly, we cannot utilize the model to predict with perfect accuracy the performance of a
benchmark over all possible ranges of processor configurations and component performances. It is
important to find where the model works and where it does not.

3.1 Execution Correlations

Tables 3 and 4 list the experimental results from executing the SPECint95 benchmarks on both
the test and reference inputs in SimpleScalar versus the statistical simulator. Across the board, we
note that the error (the difference between the two simulation techniques) is not more than 4.8%
and 7.2% respectively. This is for benchmarks with significantly different cache behaviors and code
profiles. This agreement with such small error across eight different benchmark applications and
two different input sets is encouraging and a substantial correlation point for the hybrid statistical-
symbolic execution model of study.
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Figure 6: Performance as observed with SimpleScalar and HLS for Branch Prediction Accuracy.

3.2 Hardware Correlation

While HLS was designed to model the same architecture as SimpleScalar, it can also be configured
to model a MIPS R10K processor. We validated against a 250 MHz MIPS R10K processor in
an SGI Octane system running IRIX V6.5. To obtain the statistical profile required for HLS, we
gathered the DID from SimpleScalar, and cache and branch predictor behavior using the “Perfex”
performance monitoring tool available on the IRIX operating system [3].

The correlations of HLS with this processor are shown in Table 5. Note that HLS correlates to
within 7.7%, with an average error of 3.2% across all benchmarks.

There is also one other statistical difference of note between modeling SimpleScalar and mod-
eling the R10K. Cache hit rates for SimpleScalar can be modeled accurately in HLS with a uniform
distribution. Hit rates for the R10K, however, require a more complex model which uses a normal
distribution with a variance corresponding to the R10K. We suspect that this is necessary to account
for machine and operating system effects, such as servicing program I/O and context switching,
which alter cache behavior.

3.3 Single-value Correlations

Although several validation experiments are possible, in this paper we focus on those that form
the first-order effects on performance: cache and branch prediction behavior. We will show that
the HLS simulator produces similar IPC values to SimpleScalar under varying branch prediction
accuracies, L1 I-cache hit rates, and L1 D-cache hit rates.

There are also ranges of statistical parameters where the HLS simulator is not accurate. Al-
though the HLS simulator precisely models the structure of a superscalar microprocessor, several
sources of statistical error can be introduced. It is important to identify where the HLS simulator
will have unacceptable error, so that it is not used inappropriately.

Figure 6 plots IPC versus branch prediction accuracy as reported from both SimpleScalar and
HLS running the xlisp, perl and vortex SPECint95 benchmark applications. SimpleScalar branch
prediction accuracy was varied by modifying the branch prediction table size. For each Sim-
pleScalar run, branch prediction accuracy was measured and input into HLS to produce a corre-
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Figure 7: Performance as observed with SimpleScalar and HLS for L1 I-cache hit rate.
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Figure 8: Performance as observed with SimpleScalar and the Statistical Simulator for L1 D-cache
hit rate.
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Figure 9: Multi-value correlation between SimpleScalar and the Statistical Simulator for L1 I-cache
hit rate and branch prediction accuracy.

sponding data point. Note that above 80% branch prediction accuracy, the HLS and SimpleScalar
simulators are within 6% of each other. At less than 80% accuracy, HLS and SimpleScalar be-
gin to diverge. At 75% accuracy, the error between the HLS and SimpleScalar simulators is 15%.
From these results it is clear that the branch predictor model within the HLS is usable with branch
prediction accuracies greater than 80%.

Figure 7 plots the reported IPC as we vary the L1 I-cache hit rate for xlisp, perl and vortex.
Using SimpleScalar, the hit rate is varied by changing the cache size, while in HLS the hit rate
is input directly. The figure shows that for I-cache hit rates above 90%, HLS and SimpleScalar
produce IPC values that are within 5% of each other. For hit rates in the 80-90% range, they agree
within 20%. The simulation model performs well on all of the SPECint95 benchmarks because they
all exhibit L1 I-cache hit rates greater than 90% in the baseline configuration. Future work will seek
a more accurate L1 I-cache model to bring down the observed performance differences.

Figure 8 is similar to figure 7, except that the IPC is plotted for varying L1 D-cache hit rates.
For the perl and xlisp benchmarks the HLS and SimpleScalar simulators can be seen to be within
7% of each other with L1 D-cache hit rates greater than 80%. Between 70-80% hit rate, the error
is 8%. The error climbs to 15-35% with cache hit rates from 50-70%. The vortex benchmark has
an average 16% error between 80-90% cache hit rate and less than 10% with cache hit rates greater
than 90%. Thus, with cache hit rates greater than 80%, the HLS simulator provides reasonable
results. Similar to L1 I-cache behavior, more accurate statistical models will be required to model
poorly performing data caches. For this study, the focus will be on cache hit rates greater than 80%.

3.4 Multi-value Correlations

In Section 3.1, correlations across benchmarks were presented in which several values varied, in-
cluding basic block size, dynamic instruction distance, cache hit ratios, branch prediction accuracy,
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Figure 10: Multi-value correlation between SimpleScalar and the Statistical Simulator for L1 I-
cache hit rate vs. L1 I-cache miss penalty.

and instruction mix. In Section 3.3, we presented results varying a single parameter. In this sec-
tion we will present results in which two parameters are systematically varied, in order to further
demonstrate the validity of the HLS model.

Figure 9 depicts the IPC contour space of vortex, perl and xlisp as the L1 instruction cache hit
rate is varied against the branch predictor accuracy. The solid lines on the graphs represent contour
lines generated from HLS, while the dotted lines were generated in SimpleScalar. To generate the
SimpleScalar results we varied the branch predictor table size and instruction cache size. Note that
the solid vertical line represents the limit of the branch predictor accuracy attainable in SimpleScalar
– it is the point at which further increases in the branch predictor table size did not increase branch
prediction accuracy. As depicted in the graph, HLS and SimpleScalar agree quite accurately for
instruction cache hit rates greater than 90%. Below 90% a decreasing level of accuracy is observed.

Figure 10 depicts IPC as instruction cache hit rate is varied against cache miss penalty. Here we
see a level of accuracy similar to the previous instruction cache correlations. Instruction cache hit
rates above 90% are very accurate, while cache hit rates below 90% are suitable for trend analysis
only. One interesting feature of Figure 10 for xlisp and vortex is the non-smooth contour map
between 0.93 and 0.97 on the cache hit ratio axis. This non-smooth behavior leads to an interesting
discussion about the use of HLS and the caution a user should have interpreting its results. If
parameters are varied within a real superscalar processor other machine parameters will not remain
constant. For example, variations in branch prediction accuracy affect the L1 instruction cache hit
rate. While the HLS simulator allows the user to fix all other machine parameters, one must be
aware that in reality they will change. This effect can be seen as the unified L2 cache hit rate and
branch prediction accuracy are indirectly altered by varying the cache hit rate and miss penalty. This
topic will be discussed further in Section 5.
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3.5 Summary and Discussion

From these results, we conclude that HLS represents a useful method of simulation within the
ranges of statistical profiles that we are interested in. Outside of these ranges, the accuracy of HLS
is suitable only for general trend analysis and not for discrimination of closely related points. There
are three major sources of error in the HLS simulator:

First, HLS generates random code based upon a statistical profile of the original source. One
source of error in this code generation process is that the relationship between instructions is mostly
lost. Dynamic dependence information is maintained, but it is used imprecisely with dependencies
between instructions that do not correspond exactly to the original source file. Although the gen-
erated code and the original code maintain the same statistical nature, they are in fact substantially
different.

Second, the cache and branch predictor are modeled as simple normal distributions. Except
where noted, these normal distributions are uniform distributions with a prescribed accuracy or hit
rate. It is not a coincidence that the most accurate correlation between the SimpleScalar and HLS
simulators tend to occur when the rates approach 100%. With a perfect branch predictor or a perfect
cache, the HLS and SimpleScalar cache models would be equivalent.

Third, there is no load-value or instruction fetch miss-value correlation modeled in the simulator.
We suspect that not modeling these correlation effects contribute to the cache model inaccuracies at
hit rates below 90%.

Despite these sources of error, if areas of study are confined to where HLS is accurate, inter-
esting experiments can be performed that would otherwise be extremely hard or impossible to do
using conventional simulation techniques. We present the results from two of these experiments in
the next section.

4. Application of HLS

In order to demonstrate the power of this methodology, we chose to explore two aspects of proces-
sor performance that are uniquely suited to study using this hybrid statistical simulation approach:
program characteristics and value prediction. The machine model used in this section resembles the
baseline SimpleScalar architecture. Our results indicate that HLS correlates well with this architec-
ture for the entire SPECint95 benchmark suite. The results presented in this section will continue
to focus on the vortex, perl and xlisp benchmarks, chosen because of their variation in I-cache
and branch predictor performances. The vortex benchmark has high branch prediction accuracy
(97.4%) but poor L1 I-cache hit rate (90.2%). Conversely, the xlisp benchmark has relatively poor
branch predictor behavior (87.9% accuracy), but a high LI I-cache hit rate (99.9%). Finally the perl
benchmark was chosen because for its modest branch predictor (91.4%) and L1 I-cache (96.4%)
performance.

Most of our results are presented using iso-instructions-per-cycle (iso-IPC) contour plots, which
relate two parameters and plot a two-dimensional view of a three-dimensional space. Each contour
line in the graph represents a constant IPC. Such iso-IPC plots graphically depict the design-space
of two parameters. Each is generated utilizing over 400 individual data-points collected from 8,000
runs of the HLS simulator. Each contour map presented requires approximately six hours to generate
on a 450 Mhz Pentium-II. By lowering the number and length of each iteration it is possible to
generate a contour map in 15 minutes. Such a map does have higher standard deviation in the
results, but is accurate enough to provide quick insight to the processor designer.
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Figure 11: L2 cache hit rate versus L1 cache miss penalty
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Figure 12: Branch prediction accuracy versus basic block size

4.1 Varying Code Properties

The HLS simulation methodology allows the user to systematically vary the properties of the code
being simulated. This is a very powerful capability and provides a way to study the effects of two
code properties normally very hard to modify: the basic block size and the dynamic instruction
distance.

Figure 12 depicts application performance as the branch prediction accuracy and basic block
size change. This figure shows that given the accuracy of current branch predictors, moderate in-
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L1 I-cache hit rate
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Figure 13: L1 I-cache hit rate versus basic block size

creases in basic block size will bring about noticeable performance improvements. As expected, the
largest performance gains occur as basic block sizes grow from one to fifteen instructions. Perfor-
mance gains quickly diminish after this, with no significant performance gains observed when the
block size is greater than 35 instructions.

In Figure 13, the relationship between basic block size and L1 I-cache hit rate is presented.
This figure shows that, for basic block sizes between 1 and 4 instructions, the basic block size has
the largest effect on performance. Beyond 4 instructions, however, the L1 I-cache becomes the
dominating factor.

Similarly, in Figure 14, the basic block size versus dynamic instruction distance is plotted. Two
observations can be made from studying these graphs: First, moderate dynamic instruction distances
are required for reasonable performance. This is evident from the lower regions of the perl and
xlisp graphs, with DID values of four or less. Second, the basic block size quickly becomes the
dominating factor in performance. Note that increases in DID have no significant effect for vortex.
This is due to the poor front-end machine performance. This indicates that Vortex is limited by the
instruction fetch mechanism, and not by ILP within the out-of-order core.

As Figure 15 suggests, when I-cache behavior is no longer constraining performance, a clear
trade-off is observed for all three applications between instruction fetch performance (here con-
trolled by basic block size) and ILP control within the superscalar core.

4.2 Value Prediction

Value prediction is currently an active area of research. Several value prediction schemes have been
proposed in the literature, but these schemes have shown only moderate increases in IPC [4] [5] [6]
[7] [8] [9]. To simulate value prediction a value predictor and the ability to do speculative execution
based on predicted values was added to the basic HLS structural model.
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Figure 14: Basic block size versus dynamic instruction distance
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Figure 15: Basic block size versus dynamic instruction distance assuming a perfect I-cache
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The value predictor is added to the dispatch stage. Instructions determined to be predictable by
the predictor unit are sent speculatively to the completion stage. A copy of that instruction is also
sent to the scheduling phase to perform a check. Within the scheduling phase, if an instruction’s
operands are not directly available, but predicted operand values are, then the instruction may exe-
cute speculatively on the predicted operands. In this case, no check of the instruction is performed,
because if the instruction was executing on incorrect data values a mis-speculation would have oc-
curred earlier on a predicted instruction sent to the completion stage speculatively by the dispatch
stage.

Our value prediction scheme implements two common mechanisms. First, we introduce a con-
fidence threshold and confidence values associated with a prediction [6]. Speculative execution
only occurs if the confidence value of the predictor is greater than or equal to the threshold. Sec-
ond, we use the same mechanism on mis-speculations that the branch predictor uses to roll-back
from a mis-speculated branch [6] [8]: The fetch, dispatch, schedule, execution and completion units
are flushed of mis-speculated values, and the fetch unit is directed to refetch from the start of the
mis-speculation.

To control value prediction the following additional parameters are introduced into the code
stream:

� Value prediction predictability (VPP-p) informs the simulator of the inherent predictability
[10] of the outcome of the instruction. This parameter is modeled using a normal distribu-
tion. The simulator models value prediction at a high level, not taking into account how the
hardware may achieve a certain prediction level. This parameter along with the next two
parameters determines the overall value prediction behavior.

� Value prediction knowledge (VPK-p) controls how well the value predictor inside the simula-
tor will be able to predict the instruction given the instruction’s inherent predictability. This
parameter also is modeled using a normal distribution. To understand the difference between
VPK-p and VPP-p, consider a last-value predictor versus a stride predictor on the same in-
struction stream. The VPP-p of that code remains the same, since there will be a certain
intrinsic predictability for the stream, but the VPK-p of the stride predictor will be higher
than the VPK-p of the last-value predictor.

� Value prediction confidence (VPC-p) specifies how confident the predictor is in the prediction.
This parameter is also modeled using a normal distribution. HLS compares this parameter to
a cut-off threshold to determine when the superscalar core should use a predicted value. For
example, an instruction with a low VPK-p and high VPC-p will be predicted, but probably
incorrectly (if VPP-p is low). However, a value with a high VPK-p but low VPC-p may not
be predicted, even if the value predictor is likely to make a correct prediction.

The goal of value prediction is to break true data dependencies by predicting the data value
instead of waiting for it to be generated. Another way to achieve a similar result is by lengthening
the dynamic instruction distance, ensuring that dependent instructions have completed by the time
an instruction is ready to execute. This relationship is illustrated in Figure 16, which utilizes a fully
knowledgeable predictor and varies both the inherent value predictability and dynamic instruction
distance within a code stream. The figure shows the direct relationship between DID and value
predictability. Again, note that vortex is instruction-fetch limited and even with a perfect predictor
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Figure 16: Inherent value predictability versus dynamic instruction distance assuming a perfect pre-
dictor
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Figure 17: Inherent value predictability versus value predictor knowledge
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Value Prediction Knowledge (70% Predictability, Full Confidence)
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Figure 18: Value prediction knowledge versus mis-speculation penalty

and all instructions being predicted no significant performance increases are observed. Finally, note
that unusual contour lines for xlisp at 1.9 IPC. This is due to a higher than normal variance in the
statistical simulator.

Figure 17 explores the trade-off between inherent value predictability and value prediction ac-
curacy. Note that the baseline IPCs for the vortex, perl and xlisp applications are 0.87, 1.1, and
1.4 respectively. Hence, substantial regions within these graphs equates to performance decreases.
This is the reason that accurate confidence prediction is important in value prediction schemes.
Following the baseline iso-IPC contour lines, the figure shows that, with moderate predictability, a
highly accurate predictor is required to realize any performance gains. As inherent predictability
increases beyond 95%, the accuracy of the predictor becomes significantly less important. Finally,
these graphs shows that the maximum IPC is under 0.9 for vortex, between 1.2 and 1.3 for perl,
and just under 2.0 for xlisp. This indicates no performance improvement for vortex, approximately
a 20% improvement for perl, and a 40% improvement for xlisp. However, these improvements are
only achieved with substantial predictor knowledge and inherent predictability.

Since Figure 17 suggests that mis-speculations in value prediction will occur often, it is interest-
ing to look at the cost of such mis-speculation. Assuming a moderately high inherent predictability
rate of 70%, predictor accuracy versus the mis-speculation penalty is depicted in Figure 18. These
graphs suggest that (except for a really poor predictor), performance is dependent upon predictor
accuracy, not mis-speculation penalty.

These experiments have explored the relationship between value prediction and dynamic in-
struction distance and shown that each overcomes data dependencies. However, while increasing
dynamic dependence distance does not introduce any negative effects, as previous studies have also
demonstrated, a poorly implemented value prediction scheme can substantially reduce processor
performance. Hence, designers rightly introduce confidence mechanisms. Furthermore, reducing
the stall penalty on a mis-predict is not enough to support highly speculative value prediction. In
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Figure 19: Inherent value predictability versus L1 I-cache hit rate assuming a perfect value predic-
tor
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Figure 20: Inherent value predictability versus value predictor knowledge assuming a perfect I-
cache
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Figure 21: Histogram of IPC samples from HLS and SimpleScalar

addition, Figure 19 demonstrates that without increases in the instruction fetch rate, even highly
accurate value predictors will not provide substantial performance gains.

Finally, we note that when instruction fetch is no longer constraining performance the perfor-
mance of value prediction schemes can be much more favorable. Figure 20 compares the trade-off
between value predictability and predictor knowledge under such conditions.

5. Discussion

The HLS simulator uses a combination of statistical and structural modeling to simulate a super-
scalar microprocessor. One key property of real code that is not modeled by the current HLS simula-
tor is the exact ordering of instructions, control flow and dependencies. Interestingly, the SPECint95
benchmarks can be modeled in the aggregate without this information. As long as the binary code is
statistically correlated in terms of instructions, control flow, and dependency information, the exact
ordering plays a secondary role in the performance outcome.

Program codes, however, can be deliberately written to be difficult to summarize statistically.
One example would be codes that deliberately transition between two (or more) distinctly unique
stages of execution. In such cases, the statistical profile used by HLS can be arbitrarily extended
to accommodate program peculiarities. In the worst case, an extreme profile would cause HLS to
symbolically execute every instruction in the entire program. This would be accurate but would
not be any faster than using conventional simulation techniques. If we focus on conventional codes
such as SPECint95, however, we can investigate program behavior using a statistical summary of
the whole-program execution.

Current work is on-going into additional methods of correlating HLS against traditional simula-
tion techniques. For example, the IPC of an application is not constant. Often times in architecture
studies a cumulative “average” total-program execution IPC is presented. However, when IPC is
examined over small trace samples a variation or histogram profile of IPCs are observed. Figure 21
depicts the IPC averages over 10 cycle increments for SimpleScalar and HLS. We note the variation
in IPCs as well as the general qualitative correlation between the shapes of the histograms for both
SimpleScalar and HLS.
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Figure 22: Variation in Unified L2 cache hit rate as L1 I-cache hit rate varies compared to L1 I-
cache miss penalty
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Figure 23: Variation in branch predictor accuracy as L1 I-cache hit rate varies compared to L1
I-cache miss penalty
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It is important that this investigative method not be abused. The HLS approach is not meant
to be a replacement for detailed performance analysis. The authors envision that the ideal use for
HLS is to set performance goals, to size various machine and code parameters and direct research
and design efforts at a high level. Clearly, subsequent designs need to be verified with detailed
cycle-by-cycle simulation on actual benchmark codes.

Even when HLS is used to set performance goals, unexpected behavior can arise. For instance,
as the L1 instruction cache hit rate and miss penalty is varied, cycle-by-cycle simulation results
indicate that the L2 cache hit rate and branch predictor accuracy will also change. Figure 22 depicts
how the L2 cache hit rate varies as these two parameters vary. Similarly, Figure 23 depicts how
the branch prediction accuracy also varies. These two changes are most affected by the instruction
cache hit rate; however, slight variations are seen with changes in the cache miss penalty.

In summary, while HLS is a useful tool for quick exploration of the design space, it should be
used judiciously.

6. Related work

Several research efforts have approached the problem of architecture simulation by statistical means.
Perhaps the effort most similar to HLS is that undertaken in Smith et al. [11] [12]. Their approach
uses an execution trace derived from SimpleScalar as the starting point for symbolic execution.
The program trace is systematically replaced with statistical parameters and the effects measured.
Our approach is similar, but uses an execution rather than trace driven model. Efforts are currently
underway to reconcile the two approaches.

A different approach to statistical performance modeling was used in Noonburg et al. [13].
A performance model was constructed based on the interactions between machine and program
parallelism. This work extended an earlier model presented in Jouppi et al. [14]. With these
models, benchmarks are analyzed and performance is estimated directly by application of a formula
relating program and machine parallelism. This same research group continued their statistical
modeling work in Noonburg et al. [15]. A set of Markov models were constructed to represent
machine behavior while executing a specific benchmark. These models where then linked together
and performance estimated. This approach is more abstract than the direct symbolic execution
method presented here, and the authors focus on more ideal machine models. However, extremely
accurate performance estimates are achieved.

In some respects the goals of our approach are similar to the goals of the creators of the synthetic
Whetstone [16] and Dhrystone [17] benchmarks. However, we attempt to provide an automated
approach to generating a synthetic benchmark. Furthermore this automated approach is based upon
analysis of real programs and is demonstrably more representative of actual machine performance.

7. Future work

This work can be extended in several directions. In this paper we have focused on current generation
microprocessors. We also intend to explore future generation superscalar processors. For instance,
Figure 24 compares issue width versus dynamic dependence distance assuming a perfect cache and
a basic block size of 100 instructions. The figure shows that as superscalar processors become
wider, the DID must increase commensurately. This is not a surprise, but we do note that DID
must increase slightly more compared to issue width to achieve comparable performance. Future
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Figure 24: Super-scalar issue width versus dynamic instruction distance assuming a perfect I-cache
and basic block size of 100 instructions

work will also explore deeper pipeline depths, since as clock speeds increase pipeline depths will
continue to increase throughout the processor.

Our current model focuses on aggregate performance for SPECint95. Clearly, the SPEC bench-
marks are not the only programs that are of interest to computer architects. We would like to pursue
additional benchmarks, such as OLTP applications, and expect that the statistical collection process
may have to change to accurately model these data-intensive applications.

Finally, the current simulation technique does not use any information about correlation between
load instructions and misses in the caches. Future work will investigate integrating this knowledge
from SimpleScalar back into HLS, in the hopes of further improving the correlations at extreme
cache behaviors.

8. Conclusion

In this paper, we have presented a new simulation technology. This simulation method combines
statistical profiles with symbolic execution. The simulator allows several machine parameters to be
varied and their relationship studied in far finer and more accurate detail than previously possible,
in a fraction of the time of traditional simulation techniques. Furthermore, by using synthetic code
streams, we can easily and systematically vary parameters such as basic block size, dynamic instruc-
tion distance, branch predictability and cache behavior. We expect this simulation methodology to
be beneficial in the study of both conventional and novel architectures. The simulation technique
allows the processor designer to peer into the design space, study how parameters interact, and set
performance targets for individual components of an architecture. This can help refine ideas more
quickly by providing empirical data to evaluate design decisions.
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