
Journal of Instruction-Level Parallelism 5(2003) 1-23 Submitted 9/03; published 11/03

Width-Partitioned Load Value Predictors

Gabriel H. Loh LOH@CC.GATECH.EDU

College of Computing
Georgia Institute of Technology
Atlanta, GA, 30332-0280

Abstract

Value prediction has been proposed for breaking data-dependencies and increasing in-
struction level parallelism. One of the drawbacks of many of the proposed techniques is that
the value predictors require very large hardware structures which use up many transistors
and can consume a large amount of energy. In this study, we use data-widths to partition
the value prediction structures into multiple smaller structures, and then use data-width
prediction to select from these tables. Awidth-partitionedvalue predictor requires less
space because small bit-width values get allocated to smaller storage locations instead of
using a full 64 bits. The total energy consumption of the predictor is also reduced because
only a single smaller predictor table needs to be accessed. Width-partitioning provides a
25.7-46.5% reduction in energy consumption for last value predictors and finite context
matching (FCM) predictors. For FCM predictors, width partitioning allows the total size
of the second-level tables to be reduced by 75% while still maintaining the same prediction
rates of a conventional FCM predictor. Our performance studies indicate that width par-
titioning does not degrade the geometric mean IPC on the SPEC2000 integer benchmarks,
thus showing that width partitioning is an effective technique to reduce the size and energy
requirements of value predictors.

1. Introduction

Modern processors are using speculation in increasingly aggressive ways. Branch prediction re-
moves control dependencies to increase the window of instructions that a processor can search for
parallelism. Memory dependency prediction removes false dependencies between store and load in-
structions. Data dependencies through registers have been thought to limit the inherent instruction
level parallelism of programs. The idea of data value prediction has been proposed and researched
for breaking these so-called “true dependencies” and uncovering more parallelism [14].

Although value prediction may enable speedups by removing critical data dependencies, many
of the proposed prediction algorithms require large hardware structures that consume great amounts
of space and power [24]. Even though transistor budgets in modern processors continue to increase,
overly large value predictors may still not be desirable because the extra transistors could potentially
be better used for other resources, such as larger caches. The power consumption of processors is
also one of the most critical problems facing processor designers [10, 27]. We are not advocat-
ing value prediction for low-power processor designs, but simply observing that a power-hungry
solution may not be viable even in a high-performance processor.

In Lipasti et al.’s seminal value prediction study, they make the observation that allocating a full
64 bits for each value predictor entry is suboptimal because many values do not require the full 64

c©2003 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

GABRIEL H. LOH

bits [14]. They suggest that the space for a 64-bit entry could be shared among multiple smaller-
width entries. Instead of attempting to dynamically pack multiple small-width values into a single
larger storage location, we propose to use multiple smaller tables each with different widths and use
a data-width predictorto choose among the tables [15]. Besides providing a more efficient use of
predictor table storage, we also achieve power savings by only accessing one of the smaller tables.
In this paper, we only study load value prediction, although the techniques proposed can be easily
extended to general data-value predictors.

The rest of this paper is organized as follows. Section 2 describes the different data-width prop-
erties that we are interested in and presents the measurements of these properties for our bench-
marks. Section 3 explains how to leverage these data-width properties to reduce both the space and
power requirements of a several types of value predictors. Section 4 presents our results. Section 5
reviews some of the past research related to our study, and Section 6 concludes the paper.

2. Load Data-Width Properties

Past studies have exploited the fact that the widths of data values in a program are not evenly
distributed. For a 64-bit architecture, relatively few values actually need all 64 bits since many
of the upper bits are all zero [1]. Furthermore, data-widths are very stable over time; that is if
an instruction produces a 16-bit result, it is likely that the next instance of the same instruction
will produce another 16-bit result [15]. This past research has shown that these properties tend to
hold for integer computation instructions (e.g., arithmetic operations, boolean logic, shifts). In this
section, we demonstrate that the values produced by load instructions have similar properties.

2.1 Data-Width Distributions

We first measure the distribution of data-widths in the load-value stream. The data-width of a value
is equal to the position of the most significant non-zero bit. Figure 1 shows the cumulative load
data-width distribution averaged across the twelve SPEC2000 integer benchmarks (see Section 4 for
complete details on the data collection methodology and the benchmarks used). We also considered
treating the values as sign-extended instead of zero-extended by measuring the bit-widths of the
absolute value of the load values. These results are marked as “signed” in Figure 1.

The distribution of load-value data-widths is not uniform. The curve follows a similar shape
to the register data-width distribution from Brooks and Martonosi’s study for the SPEC95 integer
benchmarks [1]. The largest fraction of loads is dominated by addresses, which have 33 bit wide
values. This is an artifact of the SPEC applications and the compiler. A program with a larger
memory footprint may have this spike at a larger bit-width. The next largest group of load values
is those that fit in one byte or less. There is also a significant fraction of loads with a value of
zero. This has been observed in the past and was exploited for optimizing data-caches as well as for
frequent value prediction[20, 26]. Treating values as signed or unsigned makes little difference to
the overall distribution.

2

WIDTH-PARTITIONED LOAD VALUE PREDICTORS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 8 16 33 64

F
ra

ct
io

n
of

 L
oa

ds

Load Value Bit-Width

Load Width Distribution of SPEC2000 Integer Benchmarks

Signed
Unsigned

Figure 1: The cumulative distribution of load-value data-widths for the SPEC2000 integer bench-
marks. The “signed” distribution corresponds to when the data-width of a value is mea-
sured using sign-extension instead of zero-extension.

2.2 Data-Width Locality

For the purposes of optimizing a load-value predictor and many other width-based optimizations,
using the exact bit-width is not necessary or perhaps even desirable. Instead, we use ranges of bit-
widths where any two values that fall into the same range are considered to have the same bit-width.
Based on the data-width distribution of Figure 1 and natural width boundaries, we use a total of six
different width classifications:W0,W1,W8,W16,W33 andW64. The classesW0 andW1 contain
values with widths of zero and one, respectively. These happen to also be the values of 0 and 1. For
the other classes,Wi includes all values with a bit-width ofi down to the next smallest class. For
example, the classW16 contains all values with bit-widths from sixteen down to nine.

Our previous study on data-width locality demonstrated that integer computations exhibit strong
locality across theW16,W33 andW64 classes [15], whereas we want to measure the data-width
locality of load instructions across six width classes. We used a PC-indexed table that records the
last seen data-width (W0 toW64) of a load value, and measured the number of loads with data-
widths equal to the previous instance. Figure 2 shows these last-width prediction results. For each
benchmark, Figure 2 shows four sets of data corresponding to table sizes of 256, 512, 1K and 2K
entries. Overall, simple last width prediction provides over 92% prediction accuracy. Increasing
the size of the prediction table beyond 2K entries does not provide much greater accuracy. We also
experimented with a version that uses an extra hysteresis bit, but that also made little difference.

3

GABRIEL H. LOH

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

F
ra

ct
io

n
of

 L
oa

ds
Load Data-Width Prediction

bz
ip

2

cr
af

ty

�

eo
n

ga
p

gc
c �

gz
ip

m
cf

pa
rs

er

�

pe
rlb

m
k�

tw
ol

f

vo
rt

ex vp
r�

A
V

G

Misp
64
33
16
8
1
0

Figure 2: The last width prediction accuracy for the SPEC2000 integer benchmarks. For each
benchmark, the four bars correspond to last width predictors with 256, 512, 1024 and
2048 entries (from left to right).

3. Width-Partitioned Predictors

Having demonstrated that load-value data-widths have an uneven distribution and are easily pre-
dictable, we now describe how to use these properties to optimize value predictors through a tech-
nique calledwidth partitioning. Afterward, we will demonstrate these techniques by detailing the
designs for width-partitioned Last Value Predictors (LVP) [14], stride-based predictors [9], and Fi-
nite Context Matching (FCM) predictors [21]. In general, width partitioning should be applicable
to other value predictors beyond those described here.

Value predictors employ a table of values that can be optimized to take advantage of the load
width distributions. This table is typically arranged as a direct-mapped cache structure. Depending
on the organization, the entries may use tags like traditional caches, partial-tags like BTBs with
partial resolution [8], or no tags at all like branch predictor pattern history tables [25]. While tags
play an important role in the performance and tuning of value predictors, our optimizations are
focused on the value storage of the tables. Therefore we will not be discussing the tags in any great
detail.

For any value predictor with a table of values, width partitioning divides the table into multiple
sub-tables that each stores values only for a givenwidth-class. For all possible data-width (from
0 bits to 64 bits), we definen width classes where each class contains a non-overlapping interval
of data-widths, such that the union of alln classes covers the entire range from 0 to 64 bits. In
Section 2 we usedW = {W0,W1,W8,W16,W33,W64}, but the technique of width partitioning
can be applied to any set of width-classes. The idea is then to use data-width prediction to choose

4

WIDTH-PARTITIONED LOAD VALUE PREDICTORS

Width
Predictor

Predicted Load Value

WkW0 ... Wk+1 Wk+2 W64...

...

......

0 k...
VP(Wk+1) VP(Wk+2) VP(W64)

Figure 3: A generic width-partitioned value predictor.

among then subtables of the predictor. By sizing the individual subtables to suit the data-width
distribution of the targeted applications, we improve the capacity of the predictor due to a larger
total number of predictor table entries. By only accessing a single subtable, we provide energy
savings because only a single smaller table is accessed.

Figure 3 shows the organization of a generic width-partitioned value predictor with a generic
width-classificationW = {W0, ...,Wk,Wk+1,Wk+2, ...,W64}. The classesW0 throughWk each
only have a single value per set. For example,W0 andW1 each only have the single values zero
and one respectively. For such classes, no explicit value predictor is necessary; the value can be
directly hard-wired. For the remaining classesWk+1 throughW64, each uses its own value predictor
VP(Wk+1) to VP(W64) respectively. Each of these value predictors has a different data-width for its
stored values, and each predictor can have a different number of entries. Finally, a width predictor
chooses among the possible predictions. Note that in this paper we use a last-width predictor, but
in general this could be any other prediction algorithm. Techniques used in the area of branch
prediction to reduce interference and increase accuracy could potentially be applied to data-width
prediction as well.

3.1 Width-Partitioned Last Value Predictor

The Last Value Predictor (LVP) is among the simplest value predictors, but it is very effective for
illustrating how width partitioning is used to optimize value predictors in general. A LVP uses a
single value prediction table (VPT). A load instruction’s address (PC) indexes into the table which
stores the last value seen for this load (or any other load that aliases to the same entry if no tags or
partial tags are employed).

To width-partition the LVP, we replace the monolithic value prediction table (VPT) with mul-
tiple value prediction tables, each with different maximum widths, and then choose between them
using a data-width predictor. Figure 4 shows the organization of ourwidth-partitioned last value
predictor (WP-LVP). The WP-LVP uses four different last value predictor tables VPT8, VPT16,

5

GABRIEL H. LOH

PC

0 1

Predicted Load Value

VPT64

VPT33

VPT16

VPT8

Last Width
Predictor

Figure 4: The organization of the width-partitioned last value predictor (WP-LVP). Each table is
PC-indexed, and the width predictor selects one of six possible value predictions. Each
table may have a different number of entries.

VPT33 and VPT64. The notation VPTi means that each table entry only storesi bits of data. Each
of the individual VPTs may have a different number of entries. The exact sizes that we use in
this study are based on the distribution of data-widths, which we will discuss with our results in
Section 4.

For the predictor lookup, the PC-indexed last width predictor tells the WP-LVP which individual
value predictor to use. The predictor then performs the lookup on the corresponding VPT. Note that
the WP-LVP does not need any tables for theW0 orW1 width classes because each of these classes
contain only a single value. A final multiplexer uses the data-width prediction to choose from 0, 1
or the output of one of the VPTs.

For the predictor update, the WP-LVP finds the actual data-width of the load value and stores
this width in the last width predictor. Then the WP-LVP stores the value in only the single VPT that
corresponds to the actual data-width. For example, if the load’s data-width isW16, then only VPT16

gets updated. By storing values in structures with a matching size, the WP-LVP greatly reduces the
amount of storage wasted on the many upper bits that are usually zero.

Serializing the last width predictor lookup and the VPT lookup increases the overall predictor
lookup latency, but this greatly reduces the energy consumption of the value predictor. In a tradi-
tional full-width LVP, each lookup (and update) requires accessing a large table which drives 64
bits worth of output data lines. On each lookup for the WP-LVP, we only need to access a single,

6

WIDTH-PARTITIONED LOAD VALUE PREDICTORS

smaller VPT. The smaller VPT consumes less energy because it has fewer entries and all VPTs with
the exception of VPT64 drive fewer output lines. If the data-width prediction isW0 orW1, then we
save even more power by not accessing any VPTs. The serializing of the last width predictor and
the VPT lookups increases the overall latency of the WP-LVP, but the value predictor lookup is not
on a critical path because it can be initiated early in the pipeline and the prediction is not needed for
many cycles.

We use six data-width classes, which requires three bits to encode each entry of the last width
predictor. With three bits, we could theoretically encode two more values or width classes. We
experimented with variations that encoded different combinations of the values -1, 2 and 3, but this
had almost no impact on the overall results.

As presented, our WP-LVP is a tagless structure. We found that while adding tags reduces the
number of mispredictions, the additional hardware cost for storing the tags is better used for increas-
ing the number of entries in the individual predictor tables.Partial tagscould also be used [7], but
examining the tradeoff between taglengths, predictor sizes, width prediction, accuracy and power is
beyond the scope of this study.

3.2 Width-Partitioned Strided Value Predictor

The last value predictor can only accurately predict “dynamically constant” load values, that is,
values that do not change over some interval of time. There are many values that change frequently,
but do so in a regular fashion. Strided value predictors (SVPs) store both the last-seen value as well
as a predicted stride or delta to predict values which increase or decrease in a linear fashion [9],
such as loop induction variables.

Extending a strided value predictor to incorporate data-width predictions is very similar to the
approach used for the simpler last value predictor. Instead of a single SVP that stores 64-bit values,
we can again use multiple SVPs that each stores values of specific widths. Figure 5 illustrates the
organization of the width-partitioned stride predictor (WP-SVP) using the same width-classes as for
the WP-LVP.

A width-partitioned strided value predictor can be further optimized. Depending on the actual
distribution of stride-widths, the number of bits used to store the stride may also be sized differently
for each value prediction table. One could go so far as to predict the widths of the strides, and store
the strides in multiple tables, but the slight decrease in size and power for this minor optimization
is probably not worth the additional complexity of implementing this scheme. Due to the strong
data-width locality, the width of a value is likely to remain unchanged even after adding its stride.
If the width-class does change from adding the stride to the value, then it could be possible to
speculatively update the last width predictor such that the next access will perform a lookup on the
corresponding SVP subtable.

3.3 Width-Partitioned Finite-Context Matching Value Predictor

The Finite Context Matching (FCM) predictor provides superior value prediction accuracy, but the
hardware organization is also more complex. The FCM predictor is a two-level value predictor,
analogous to two-level branch predictors such as the PAs or gshare predictors [16, 25]. Instead of
a branch history table for tracking past branch outcomes, FCM uses avalue history table(VHT)

7

GABRIEL H. LOH

VPT64

PC

Predicted Load Value

VPT33

VPT16

VPT8

Last Width
Predictor

0 1

Stride Value

Figure 5: A width-partitioned strided value predictor.

for remembering past load-value patterns. Figure 6 shows the hardware organization of a FCM
predictor. For each load, an order-m FCM predictor stores the lastm load values in the VHT. The
FCM predictor uses a hash of this value history to index into a second-levelvalue prediction table
(VPT) that stores the actual value prediction.

In a FCM predictor, there are two structures that can potentially benefit from our width partition-
ing technique: the VHT and the VPT. The problem of partitioning the value history table based on
data-widths is complicated by the fact that the lastm load values for a given PC may have varying
widths. The strong temporal locality of load-value data-widths suggests that in the common case,
the widths of all values in the value history will have the same width so long asm is not too large.
Our approach is to simply divide the value history stream into multiple substreams based on data-
widths. The partitioning of the VPT is analogous to that of the WP-LVP. We use four separate VPTs
of different widths, and select from only one based on the width prediction. Figure 7 shows the
hardware organization of a FCM predictor with both the VHT and VPT partitioned by width. Note
that predictions of zero and one are based solely on the last width predictor and do not incorporate
any value history.

We considered two width-partitioned FCM predictors. The first configuration, called the par-
tially width-partitioned FCM (PWP-FCM) predictor uses a conventional VHT combined with a
width-partitioned VPT. The PWP-FCM predictor may require different hashing functions to index
into the different sized second-level prediction tables. The second configuration (shown in Figure 7)
is the fully width-partitioned FCM (FWP-FCM), that uses width partitioning for both the VHT and
the VPT.

8

WIDTH-PARTITIONED LOAD VALUE PREDICTORS

1st Level: Value History Table (VHT)

PC

index
function
(hash)

2nd Level: Value
Prediction Table (VPT)

Value Prediction

Figure 6: The finite context matching (FCM) predictor uses a hash of the past local value history of
a load as an index into the value prediction table.

In the PWP-FCM predictor, we must store the full 64-bit values in the value history table because
the hashing functions vary depending on the width prediction. For the FWP-FCM predictor where
there are per-width VHTs, each VHT is used to index into only a single VPT, and therefore only
one hash function ever gets used. In this case, we can save space by storing the hashed versions of
the values directly in the VHTs. This also has the additional benefit of moving some of the hashing
latency to the update phase. Note that zeros and ones never get inserted into any of the VHTs.

4. Results

In this section, we present the performance results for the width-partitioned LVP and FCM predic-
tors. We measure prediction accuracy rates and power savings for predictors over a range of hard-
ware budgets, and we measure the performance impact for value predictors with 8K-entry value
prediction tables.

4.1 Methodology

In this study, we used the SimpleScalar toolset to collect all of our data except for the power savings
results [2]. We used a modified version of the in-order functional simulator sim-safe to collect the
load property statistics of Section 2. We wrote our ownsim-vpredload-value predictor simulator.
Sim-vpred is the value-prediction analogue of the in-order branch predictor simulator sim-bpred.
We used the twelve integer applications from the SPEC2000 benchmark suite. For each benchmark,
we simulated 200 million instructions after skipping the initial setup phase of the program. All
benchmarks were compiled withcc -arch ev6 -non shared -fast -O4 on an Alpha
21264. Table 1 lists the benchmark input sets and simulation fastforward points.

9

GABRIEL H. LOH

VHT64

PC

VPT8

VPT16

VPT33

VPT64Last Width
Predictor

0 1

Predicted Load Value

VHT8

VHT16

VHT33

Figure 7: Both the value history table and the value prediction table can be divided into smaller
tables based on load-value data-widths.

Benchmark Name Instructions Benchmark Name Instructions
(Input Set) Skipped (Input Set) Skipped
bzip2 (program) 45.9B mcf 20.675B
crafty 44.8B parser 18.9B
eon (rushmeier) 8.5B perlbmk (splitmail) 100M
gap 30B twolf 10.625B
gcc (200) 20B vortex (2) 13.6B
gzip (graphic) 37.95B vpr (route) 25.475B

Table 1: The SPEC2000 benchmarks used in this study, along with the input sets and the number
of instructions skipped before simulation. All inputs are from the reference set.

10

WIDTH-PARTITIONED LOAD VALUE PREDICTORS

For the power savings results, we used CACTI 3.0 [22]. This version of CACTI takes layout
considerations into account and provides timing and power results for cache structures. Because we
only consider tagless predictor tables, our power results do not include any of the power components
due to the tag array and tag matching that CACTI reports. We use the sum of the data array decode,
data array wordline and bitline, sense amp, and data output driver power.

Our performance figures were generated using the MASE simulator [11], which is part of
the SimpleScalar toolset (pre-release version 4.0). We added support for traditional and width-
partitioned last-value and finite context matching value predictors and the associated prediction
verification and misprediction recovery. The details of the simulator configuration are explained in
Section 4.4.

4.2 WP-LVP

In the rest of this section, we first detail the space and power reduction results for the width-
partitioned last value predictor. Then we present similar results for the FCM predictors. Finally,
we provide the ILP performance results for both types of predictors.

4.2.1 SPACE SAVINGS

Our first set of results compares our WP-LVP to a conventional LVP. Both do not use tags. The
sizing for the individual VPT tables in the WP-LVP use a 4:2:8:1:32 ratio of number of entries
in the VPT8, VPT16, VPT33, VPT64 and the last width predictor. For example, our 8KB WP-
LVP configuration uses a 512-entry VPT8, a 256-entry VPT16, a 1K-entry VPT33, a 128-entry
VPT64, and a 4K-entry last width predictor. We used the distribution of data-width classes from
Figure 1, rounded the number of entries per table to powers-of-two and then further increased some
of the tables sizes to make the total storage requirements in kilobytes close to a power-of-two.
A corresponding conventional 64 bits-per-entry LVP has eight times the number of entries as the
VPT64 of the WP-LVP, so the 8KB LVP has 1K entries. Although the last width prediction results
from Figure 2 indicate the width predictors with 2K entries are sufficient, we maintain the same table
size ratios for all configurations so that comparisons to the conventional LVP are for predictors with
close to equal sizes.

Figure 8 shows the value prediction rates for the WP-LVP and the LVP for different hardware
budgets. These results are only for last value prediction accuracy and do not make use of any kind of
confidence mechanism. Across the range of predictor sizes, a WP-LVP achieves an accuracy that is
between a traditional LVP of the same size and a traditional LVP of twice the size. For configurations
at 16KB and above, the predictor tables are sufficiently large to contain the working set of load
values; further increases in table sizes do not provide many additional correct predictions. Overall,
our width partitioning approach can reduce the space requirements of a LVP by approximately one
half with a slight loss of accuracy.

We also simulated the load-value predictors in conjunction with a simple counter-based con-
fidence mechanism. We used a PC-indexed table of saturating three-bit counters. On a correct
prediction, the counter is incremented by one. On a misprediction, the counter is decremented by
three. The counter is in a high-confidence state if its value is greater than or equal to five. Confi-
dence mechanisms are crucial for any practical value predictor implementation because they filter

11

GABRIEL H. LOH

 0.3

 0.4

 0.5

 0.6

 0.7

 1 2 4 8 16 32 64 128

P
re

di
ct

io
n

R
at

e

�

Predictor Size (KB)

Load Value Prediction

WP-LVP
LVP

Figure 8: The load-value prediction accuracy for a conventional LVP and the WP-LVP across a
range of hardware budgets.

out the difficult to predict loads which would cause many otherwise preventable value mispredic-
tions. The number of entries in the confidence tables simulated are equal to the number of entries
in our conventional LVP configuration. Figure 9 shows the value prediction results for the same
configurations as in Figure 8, but with these confidence counters. The data bars only show the
fraction of loads which are either correctly predicted or mispredicted. All remaining loads have
low-confidence and therefore make no prediction. The prediction accuracy trends are similar to the
case without the confidence counters, and the fraction of mispredicted loads ranges from 1.33% to
1.52% across all hardware budgets.

4.2.2 POWER SAVINGS

In Section 3, we described how serializing the last width predictor access with the load-value predic-
tor access can reduce the energy consumption of the WP-LVP. The total lookup energy consumption
of the serialized WP-LVP is

EWP-LVP = nLWP · ELWP +
∑
w∈W

nw · Ew

wherenLWP is the number of last width predictor lookups (equal to the total number of load in-
structions),nw is the number of loads predicted to be in data-width classw, andEX is the energy
consumed by one access of tableX. The setW is equal to{W0,W1,W8, ...W64}. Because width
predictions ofW0 andW1 correspond to the constants zero and one, no additional VPT lookup is
needed and thereforeE0 = E1 = 0 pJ. Note that this equation only computes the energy consump-
tion due to predictor lookups. The equation for the energy consumption due to updates is identical,
except thatn is the number of updates per table. Table 2 lists the energy consumption for a single

12

WIDTH-PARTITIONED LOAD VALUE PREDICTORS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

F
ra

ct
io

n
of

 L
oa

ds

Predictor Size

Last Value Prediction with 3-bit Confidence Counters

1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB

LVP
WP-LVP

Hit
Mispred

Figure 9: The load-value prediction accuracy for a conventional LVP (left bar) and the WP-LVP
(right bar) with three-bit saturating confidence counters. The fraction of loads not classi-
fied as “Mispred” or “Hit” in this figure are non-predicted low-confidence loads.

access in each of the prediction tables, as well as for an access in a traditional LVP. The tables are
sized for a hardware budget of 8KB.

We measured the numbers of each kind of predictor lookups and updates, with the energy costs
of Table 2, computed the overall energy consumption of the value predictors. Figure 10 shows
the total value predictor energy consumption for the last value predictors, averaged over the twelve
benchmarks. The energy consumption is divided into the energy spent on predictor lookup and
predictor update. For the WP-LVP configuration (segmented bars), we provide a further breakdown
showing the energy consumed for each individual predictor table. The load width predictor and the
VPT33 table consume the majority of the energy. The load width predictor must always be accessed,
and VPT33 has the highest per-access energy cost. There is little difference in energy consumption
between the lookup phase and the update phase. The 1KB to 8KB and the 32KB WP-LVP predictors
provide a 40.4% to 46.5% reduction in total energy consumption over a conventional last value
predictor of the same size. For the 16KB, 64KB and 128KB predictors, the energy reduction ranges
from 25.7% to 35.0%.

The power savings results in Figure 10 do not take any sort of confidence mechanism into ac-
count. With a confidence mechanism, even greater power savings can be achieved (for either the
conventional LVP or the WP-LVP) by serializing the confidence lookup with the value prediction.
Any load initially predicted as having low-confidence need not waste any additional energy to per-
form the value prediction lookup.

13

GABRIEL H. LOH

Table Name Number of Actual Energy per
Entries Size (KB) Access (pJ)

1KB Predictor
Last Width Predictor 512 0.1875 14.5
VPT8 64 0.0625 15.6
VPT16 32 0.0625 25.9
VPT33 128 0.5156 57.1
VPT64 16 0.125 90.9
Conventional LVP 128 1.0 104.4

2KB Predictor
Last Width Predictor 1024 0.375 16.7
VPT8 128 0.125 17.3
VPT16 64 0.125 27.7
VPT33 256 1.0313 61.8
VPT64 32 0.25 93.7
Conventional LVP 256 2.0 112.3

4KB Predictor
Last Width Predictor 2048 0.75 24.7
VPT8 256 0.25 20.3
VPT16 128 0.25 30.7
VPT33 512 2.0625 70.0
VPT64 64 0.5 98.7
Conventional LVP 512 4.0 125.7

8KB Predictor
Last Width Predictor 4096 1.5 29.0
VPT8 512 0.5 24.4
VPT16 256 0.5 34.7
VPT33 1024 4.125 82.4
VPT64 128 1.0 104.5
Conventional LVP 1024 8.0 162.4

16KB Predictor
Last Width Predictor 8192 3.0 55.6
VPT8 1024 1.0 30.1
VPT16 512 1.0 40.6
VPT33 2048 8.25 119.0
VPT64 256 2.0 112.3
Conventional LVP 2048 16.0 205.3

32KB Predictor
Last Width Predictor 16384 6.0 70.4
VPT8 2048 2.0 38.0
VPT16 1024 2.0 48.9
VPT33 4096 16.5 158.7
VPT64 512 4.0 125.7
Conventional LVP 4096 32.0 296.6

64KB Predictor
Last Width Predictor 32768 12.0 132.5
VPT8 4096 4.0 49.0
VPT16 2048 4.0 60.1
VPT33 8192 33.0 250.0
VPT64 1024 8.0 162.4
Conventional LVP 8192 64.0 394.8

128KB Predictor
Last Width Predictor 65536 24.0 211.4
VPT8 8192 8.0 85.6
VPT16 4096 8.0 96.7
VPT33 16384 66.0 343.9
VPT64 2048 16.0 205.3
Conventional LVP 16384 128.0 567.8

Table 2: The number of entries, physical size, and energy cost for each of the predictor tables.

14

WIDTH-PARTITIONED LOAD VALUE PREDICTORS

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

E
ne

rg
y

(m
ic

ro
-J

ou
le

s)

�

Last Value Prediction Energy Consumption

1K
B

2K
B

4K
B

8K
B

16
K

B

32
K

B

64
K

B

12
8K

B

Lookup
Update

64-bit
33-bit
16-bit

8-bit
Width

LVP

Figure 10: The predictor energy consumption for the WP-LVP (segmented bars) and a conventional
LVP (solid bars). For the WP-LVP, the energy measurements are further divided based
on the contribution of each component predictor table.

Table 1024-entry 4096-entry
Name Entries Size (KB) Entries Size (KB)
VHT8 1024 3.0 4096 12.0
VHT16 512 3.0 2048 12.0
VHT33 1024 12.4 4096 49.5
VHT64 256 6.0 1024 24.0

VHT (total) 2816 24.4 11264 97.5
FCM VHT 1024 24.0 4096 96.0

Table 3: The number of entries and size (in KB) of the different value history tables.

4.3 WP-FCM

In this section, we present the prediction accuracy results of the PWP-FCM and the FWP-FCM
predictors. We compare these predictors to a traditional FCM predictor. All predictors are third-
order predictors, and the index and hashing functions used are the improved functions described by
Burtscher [3]. For the width-partitioned VPTs, we use the same sizing ratios as for the WP-LVP
tables.

15

GABRIEL H. LOH

 0.3

 0.4

 0.5

 0.6

 0.7

P
re

di
ct

io
n

R
at

e

�

FCM Load Value Prediction

1K
B

2K
B

4K
B

8K
B

16
K

B

32
K

B

64
K

B

12
8K

B

1K
B

2K
B

4K
B

8K
B

16
K

B

32
K

B

64
K

B

12
8K

B

2nd Level Table Size

1024 VHT Entries 4096 VHT Entries

FWP-FCM
PWP-FCM

FCM

Figure 11: The value prediction accuracy of the FCM predictors for two different sized first-level
VHTs. For the fully width-partitioned FCM predictor, the first-level VHTs use the siz-
ings listed in Table 3.

4.3.1 SPACE SAVINGS

We evaluate two classes of predictors. The first class uses a 24KB (1024-entry) VHT for the FCM
and PWP-FCM predictors, and the FWP-FCM predictor uses a collection of VHTs with a compa-
rable hardware cost of 24.4KB. The second class uses VHTs with four times as many entries in
each table. The exact sizes and number of entries are listed in Table 3. For each class we varied
the second-level VPT hardware budget from 1KB to 128KB. Figure 11 shows the prediction ac-
curacy of the FCM, PWP-FCM and FWP-FCM predictors. For the 1K-entry VHT configurations,
the width-partitioned VPTs of the PWP-FCM predictor provide some additional accuracy due to the
larger effective size of the prediction tables. Using a width-partitioned history table provides a much
greater benefit as a 1K-entry VHT still suffers from considerable inter-load interference. Overall,
the FWP-FCM predictor provides a factor of four reduction in space requirement over a traditional
FCM predictor for approximately the same prediction accuracy.

With a 4K-entry VHT, there is far less interference between unrelated load histories, and so the
benefits of the width-partitioned VHT are less pronounced. The FWP-FCM predictor still reduces
the space requirements by roughly one half with about the same accuracy as the FCM predictor.
As the number of entries in the second level tables increases, the prediction accuracy of the PWP-
FCM predictor catches up with and then surpasses that of the FWP-FCM predictor. We believe that
while partitioning the load-value history into separate substreams provides space-savings and energy
benefits, there are a small number of loads that do require multi-width contexts to be accurately
predicted.

16

WIDTH-PARTITIONED LOAD VALUE PREDICTORS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

F
ra

ct
io

n
of

 L
oa

ds

Predictor Size

FCM Value Prediction with 3-bit Confidence Counters

1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB

FCM

PWP-FCM

FWP-FCM

Hit
Mispred

Figure 12: The load-value prediction accuracy for conventional FCM (left bar), PWP-FCM (middle
bar) and FWP-FCM (right bar) predictors with three-bit saturating confidence counters.
The fraction of loads not classified as “Mispred” or “Hit” in this figure are non-predicted
low-confidence loads.

We also simulated the FCM predictor in conjunction with the same three-bit confidence mech-
anism used for the LVPs in Section 4.2.1. Figure 12 shows the average misprediction rates and
the average correct prediction rates. Low-confidence non-predictions make up all remaining loads.
Overall, the confidence mechanism keeps the misprediction rates between 1.54% and 2.26%. The
misprediction rates for the LVP configurations are lower because the greater number of mispre-
dictions for the LVPs causes the confidence mechanism to label more value predictions as being
low-confidence. Labeling more value predictions as low-confidence means that more mispredic-
tions are converted to low-confidence non-predictions.

4.3.2 POWER SAVINGS

For the FCM predictors, we performed an energy consumption analysis similar to that for the last
value predictors. We only considered the energy reduction in the FCM second-level value prediction
tables. The second-level tables sizes and energy costs are identical to the LVP tables sizes listed in
Table 2. Figure 13 shows the energy consumption for both the conventional FCM predictor as well
as the width-partitioned FCM predictor over a range of sizes. The second-level energy consumption
for the PWP-FCM and the FWP-FCM are identical, and therefore Figure 13 does not display the
data separately for the two predictor types. Overall, the trends are very similar to the last value
predictors, with the smaller configurations achieving energy reductions from 40.4% to 46.5%, and
the larger configurations attaining reductions in the 25.8-35.0% range.

17

GABRIEL H. LOH

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

E
ne

rg
y

(m
ic

ro
-J

ou
le

s)

�

FCM Value Prediction Energy Consumption

1K
B

2K
B

4K
B

8K
B

16
K

B

32
K

B

64
K

B

12
8K

B

Lookup
Update

64-bit
33-bit
16-bit

8-bit
Width
FCM

Figure 13: The second-level table predictor energy consumption for the WP-FCM (segmented bars)
and a conventional FCM (solid bars). For the WP-FCM, the energy measurements are
further divided based on the contribution of each component predictor table.

4.4 ILP Impact

Achieving equal prediction rates for less power does not necessarily mean that the overall perfor-
mance of the value-predicting processor will be unaffected. A correct value prediction of a load
on a program’s critical path will provide a greater performance benefit than the correct prediction
of a non-critical load. Therefore the prediction rate alone is not sufficient to fully judge the effects
of width partitioning on a value predicting processor. To quantify the performance impact of our
width-partitioned value predictors, we simulated a superscalar processor supporting value prediction
and observed the attained IPC.

We modeled a four-way out-of-order superscalar processor. The configuration parameters are
listed in Table 4. The processor supports selective replay of only data-dependent instructions fol-
lowing a value-mispredicted load Although an oracle memory dependence predictor is not imple-
mentable, the store sets predictor attains performance levels very close to that of an oracle predic-
tor [6], and so we chose to use an oracle predictor as an approximation of store sets to simplify our
simulator. We simulated the same twelve SPEC2000 integer benchmarks with the same inputs and
sample windows as have been used throughout the rest of this study.

We simulated the LVP and FCM predictors with 8K-entry (or width-partitioned equivalent)
value prediction tables. Figure 14 shows the IPC performance improvement relative to a base pro-
cessor configuration that performs no value prediction. Overall, FCM predictors perform better
than last value predictors, which is not surprising due to the higher prediction rates of the FCM
predictors. For either the LVP or FCM predictors, width partitioning has very little effect on the

18

WIDTH-PARTITIONED LOAD VALUE PREDICTORS

Parameter Value
Fetch, Decode, Issue, Commit Widths 4 instructions per cycle

Fetch Queue 32 instructions
Issue Queue 32 instructions

Reorder Buffer 128 instructions
Load Store Queue 64 instructions

Front-end Pipeline Length 6 stages
Scheduler Latency 3 cycles

L1 instruction and data caches 16KB, 4-way, 64 byte line, 3 cycles each
L2 unified cache 512KB, 8-way, 128 byte line, 12 cycles
Memory Latency 100 cycles

Table 4: The simulated processor configuration.

-4
-2
 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22

%
 IP

C
 S

pe
ed

up

�

Performance Relative to No Value Prediction

bz
ip

2

cr
af

ty

�

eo
n

ga
p

gc
c �

gz
ip

m
cf

pa
rs

er

�

pe
rlb

m
k�

tw
ol

f

vo
rt

ex vp
r�

G
eo

. M
ea

n

LVP
WP-LVP

FCM
PWP-FCM
FWP-FCM

Figure 14: The IPC speedup of each value predictor over a base processor configuration with no
load value prediction.

geometric mean IPC. This means that width partitioning is an effective means for reducing the size
and energy consumption of value predictors without any negative impact on overall performance.
In fact, there is actually a very slight performance improvement of 0.01% for the WP-LVP over
the LVP, and 0.29% for the FWP-FCM over the FCM configuration. On a per-benchmark basis,
the performance benefits of value prediction has a greater variance, but these differences are mostly
independent from width partitioning.

19

GABRIEL H. LOH

5. Related Work

This research follows from a large body of related work. The most similar research to this paper
is the 2-mode predictor of Sato and Arita. The other studies which are most relevant fall into three
categories. The first is the existing research on value prediction. The second is on width-based
optimizations. The last group is in partitioned hardware structures.

Sato and Arita proposed the2-modevalue predictor which is the most similar scheme to our
width partitioning [19]. The 2-mode predictor uses two prediction tables, one for 8-bit values and
another for 32-bit values (the study was performed for a 32-bit architecture). Instead of using a
width prediction, all predictor tables use tags and a load can only have a predicted value stored in a
single location. Our approach generalizes this idea to any number of width classifications. During
the lookup phase, the 2-mode predictor must access both tables in parallel to search for an entry that
has a matching tag. Width partitioning saves energy because it only accesses one of the individual
LVP tables. Our update procedure is also much simpler because in addition to updating one of the
tables with the data value, the 2-mode predictor must also check the other table and invalidate any
matching entries. Our width partitioning also allows for cheap prediction of common zero and one
valued loads, similar to the 0/1 frequent value predictor [20].

After Lipasti et al.’s seminal load-value prediction study [14], Lipasti and Shen extended the
concept to general value prediction of any register value producing instruction [13]. More accurate
value prediction algorithms have been proposed such as stride-based predictors, two-level predictors
and hybrid predictors [24]. The finite context matching predictor provides even better accuracy by
being able to detect and predict repeating patterns in the value history [21].

Morancho et al. proposed using a dynamic load classification scheme to avoid unpredictable
loads thus reducing contention in the value prediction tables [17]. Calder et al. proposed filtering
out non-critical instructions, thus using the value prediction resources to only target instructions
that lie on a program’s critical path of execution [5]. Note that our proposed width partitioning
approach is orthogonal to these techniques and can be used to further reduce the space and power
requirements of any of these more sophisticated prediction schemes.

Many past studies have identified and exploited the fact that data-widths are not uniformly dis-
tributed. SIMD instruction set extensions allow the processor to increase the effective execution
bandwidth by allowing a program to perform a single operation on multiple sets of narrow-width
data in parallel [12, 18]. The Dynamic Zero Compression (DZC) cache reduces energy consumption
by using a single bit to indicate that a full byte is zero [23]. Brooks and Martonosi proposed width-
based optimizations for operation packing and power savings [1]. Loh introduced data-width pre-
diction to solve the problem of providing width information early enough in the processor pipeline
for the dynamic instruction scheduler to perform width-based scheduling decisions [15].

Our value predictor organization uses data-widths to partition the load-value predictor into sev-
eral smaller but more efficient structures. The idea of partitioning hardware structures also comes up
in many other contexts. Hybrid predictors for branch prediction and value prediction partition their
predictors into multiple structures, each of which predicts certain classes of instructions better than
the others [16, 24]. Our width-partitioned predictors also have a similar structure to way-predicted
data caches [4]. A way-predicted cache has multiple direct mapped cache structures (the ways), and
a prediction specifies which of these should be accessed. This provides a reduction in power similar

20

WIDTH-PARTITIONED LOAD VALUE PREDICTORS

to our WP-LVP by accessing only a single structure. Of great importance to caches, having smaller
individual structures can also reduce the access latency for memory operations, although it is much
less important for our value predictors.

6. Conclusions

Although value prediction shows some promise for increasing the performance of future proces-
sors, the extensive hardware budgets and high power consumption of many proposed prediction
algorithms need to be taken into consideration. By dividing a value predictor into several smaller
predictors of different widths, we can achieve a more efficient use of the predictor tables by allo-
cating appropriately sized entries based on the actual widths of the values. Furthermore, by only
accessing the one table corresponding to the width of the value, we can achieve a significant power
savings for the predictor. Our width partitioning technique can potentially be applied to other load-
value or general data-value predictors for space reduction and power savings without impacting
overall performance.

References

[1] David Brooks and Margaret Martonosi. Value-Based Clock Gating and Operation Packing:
Dynamic Strategies for Improving Processor Power and Performance.ACM Transactions on
Computer Systems, 18(2):89–126, May 2000.

[2] Doug Burger and Todd M. Austin. The SimpleScalar Tool Set, Version 2.0. Technical Report
1342, University of Wisconsin, June 1997.

[3] Martin Burtscher. An Improved Index Function for (D)FCM Predictors.Computer Architec-
ture News, 30(3):19–24, June 2002.

[4] Brad Calder, Dirk Grunwald, and Joel Emer. Predictive Sequential Associative Cache. InPro-
ceedings of the 2nd International Symposium on High Performance Computer Architecture,
pages 244–253, San Jose, CA, USA, February 1996.

[5] Brad Calder, Glenn Reinmann, and Dean Tullsen. Selective Value Prediction. InProceedings
of the 26th International Symposium on Computer Architecture, pages 64–74, Atlanta, GA,
USA, June 1999.

[6] George Z. Chrysos and Joel S. Emer. Memory Dependence Prediction Using Store Sets. In
Proceedings of the 25th International Symposium on Computer Architecture, pages 142–153,
Barcelona, Spain, June 1998.

[7] Jamison Collins, Suleyman Sair, Brad Calder, and Dean M. Tullsen. Pointer Cache Assisted
Prefetching. InProceedings of the 35th International Symposium on Microarchitecture, pages
62–73, Istanbul, Turkey, November 2002.

[8] Barry Fagin. Partial Resolution in Branch Target Buffers.IEEE Transaction on Computers,
46(10):1142–1145, 1997.

21

GABRIEL H. LOH

[9] Freddy Gabbay and Avi Mendelson. Can Program Profiling Support Value Prediction? InPro-
ceedings of the 30th International Symposium on Microarchitecture, pages 270–280, Research
Triangle Park, NC, USA, December 1997.

[10] Ricardo Gonzalez and Mark Horowitz. Energy Dissipation in General Purpose Microproces-
sors.IEEE Journal of Solid-State Circuits, 31(9):1277–1284, September 1996.

[11] Eric Larson, Saugata Chatterjee, and Todd Austin. MASE: A Novel Infrastructure for De-
tailed Microarchitectural Modeling. InProceedings of the 2001 International Symposium on
Performance Analysis of Systems and Software, Tucson, AZ, USA, November 2001.

[12] Ruby Lee. Accelerating Multimedia with Enhanced Microprocessors.IEEE Micro Magazine,
15(2):22–32, April 1995.

[13] Mikko H. Lipasti and John Paul Shen. Exceeding the Dataflow Limit via Value Prediction. In
Proceedings of the 29th International Symposium on Microarchitecture, pages 226–237, Paris,
France, December 1996.

[14] Mikko H. Lipasti, Christopher B. Wilkerson, and John Paul Shen. Value Locality and Load
Value Prediction. InProceedings of the Symposium on Architectural Support for Programming
Languages and Operating Systems, pages 138–147, Cambridge, MA, USA, October 1996.

[15] Gabriel H. Loh. Exploiting Data-Width Locality to Increase Superscalar Execution Band-
width. In Proceedings of the 35th International Symposium on Microarchitecture, pages 395–
405, Istanbul, Turkey, November 2002.

[16] Scott McFarling. Combining Branch Predictors. TN 36, Compaq Computer Corporation
Western Research Laboratory, June 1993.

[17] Enric Morancho, Jośe Maŕıa Llabeŕıa, and Angel Oliv́e. Split Last-Address Predictor. In
Proceedings of the International Conference on Parallel Architectures and Compilation Tech-
niques, pages 230–239, Paris, France, October 1998.

[18] Alex Peleg and Uri Weiser. MMX technology extension to the Intel architecture.IEEE Micro
Magazine, 16(4):51–59, August 1996.

[19] Toshinori Sato and Itsujiro Arita. Table Size Reduction for Data Value Predictors by Exploiting
Narrow Width Values. InProceedings of the 14th International Conference on Supercomput-
ing, pages 196–205, Santa Fe, New Mexico, USA, May 2000.

[20] Toshinori Sato and Itsujiro Arita. Low-Cost Value Predictors Using Frequent Value Locality.
In Proceedings of the 4th International Symposium on High Performance Computing, pages
106–119, Kansei Science City, Japan, May 2002.

[21] Yiannakis Sazeides and James E. Smith. Implementations of Context Based Value Predictors.
ECE 97-8, University of Wisconsin-Madison, December 1997.

22

WIDTH-PARTITIONED LOAD VALUE PREDICTORS

[22] Premkishore Shivakumar and Norman P. Jouppi. CACTI 3.0: An Integrated Timing, Power,
and Area Model. TR 2001/2, Compaq Computer Corporation Western Research Laboratory,
August 2001.

[23] Luis Villa, Michael Zhang, and Krste Asanović. Dynamic Zero Compression for Cache En-
ergy Reduction. InProceedings of the 33rd International Symposium on Microarchitecture,
Monterey, CA, USA, December 2000.

[24] Kai Wang and Manoj Franklin. Highly Accurate Data Value Prediction Using Hybrid Pre-
dictors. InProceedings of the 30th International Symposium on Microarchitecture, pages
281–290, 1997.

[25] Tse-Yu Yeh and Yale N. Patt. Two-Level Adaptive Branch Prediction. InProceedings of the
24th International Symposium on Microarchitecture, pages 51–61, Albuqueque, NM, USA,
November 1991.

[26] Youtao Zhang, Jun Yang, and Rajiv Gupta. Frequent Value Locality and Value-Centric Data
Cache Design. InProceedings of the 9th Symposium on Architectural Support for Program-
ming Languages and Operating Systems, pages 150–159, Cambridge, MA, USA, November
2000.

[27] Victor V. Zyuban and Peter M. Kogge. Optimization of High-Performance Superscalar Archi-
tectures for Energy Efficiency. InProceedings of the 2000 International Symposium on Low
Power Electronics and Design, pages 196–205, Rapallo, Italy, July 2000.

23

