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Abstract

Simultaneous Multithreading (SMT) processors achieve high processor throughput at
the expense of single-thread performance. This paper investigates resource allocation poli-
cies for SMT processors that preserve, as much as possible, the single-thread performance
of designated “foreground” threads, while still permitting other “background” threads to
share resources. Since background threads on such an SMT machine have a near-zero per-
formance impact on foreground threads, we refer to the background threads as transparent
threads. Transparent threads are ideal for performing low-priority or non-critical compu-
tations, with applications in process scheduling, subordinate multithreading, and on-line
performance monitoring.

To realize transparent threads, we propose three mechanisms for maintaining the trans-
parency of background threads: slot prioritization, background thread instruction-window
partitioning, and background thread flushing. In addition, we propose three mechanisms
to boost background thread performance without sacrificing transparency: aggressive fetch
partitioning, foreground thread instruction-window partitioning, and foreground thread
flushing. We implement our mechanisms on a detailed simulator of an SMT processor, and
evaluate them using 8 benchmarks, including 7 from the SPEC CPU2000 suite. Our results
show when cache and branch predictor interference are factored out, background threads
introduce less than 1% performance degradation on the foreground thread. Furthermore,
maintaining the transparency of background threads reduces their throughput by only 23%
relative to an equal priority scheme.

To demonstrate the usefulness of transparent threads, we study Transparent Soft-
ware Prefetching (TSP), an implementation of software data prefetching using transparent
threads. Due to its near-zero overhead, TSP enables prefetch instrumentation for all loads
in a program, eliminating the need for profiling. TSP, without any profile information,
achieves a 9.41% gain across 6 SPEC benchmarks, whereas conventional software prefetch-
ing guided by cache-miss profiles increases performance by only 2.47%.

1. Introduction

Simultaneous multithreading (SMT) processors achieve high processor throughput by ex-
ploiting ILP between independent threads as well as within a single thread. The increased
processor throughput provided by SMT, however, comes at the expense of single-thread
performance. Because multiple threads share hardware resources simultaneously, individ-
ual threads get fewer resources than they would have otherwise received had they been
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Figure 1: IPC of a single benchmark running in a two-benchmark multiprogrammed workload
normalized to its single-threaded IPC on a dedicated SMT. Percentages appearing on top
of the bars report reduction in single-thread performance due to simultaneous execution.

running alone. Furthermore, existing resource allocation policies, such as ICOUNT [1]
and FPG [2], favor threads with high ILP, steering resources to threads whose instructions
pass through the pipeline the most efficiently. Threads that utilize processor resources less
efficiently receive fewer resources and run even slower.

To demonstrate this reduction in single-thread performance, Figure 1 shows the IPC
of individual threads running in a multiprogrammed workload. Different bars in Figure 1
represent different multiprogrammed workloads, each consisting of two benchmarks running
simultaneously on an 8-way SMT machine with a 128-entry instruction window depth. In
these experiments, the SMT processor uses the ICOUNT policy as its fetch allocation mech-
anism. The benchmarks are selected from the SPEC CPU2000 benchmark suite, and the
labels under each bar name the two benchmarks participating in each workload. The perfor-
mance bars themselves report the IPC of one of the benchmarks (the left-most benchmark
in each bar’s label) normalized to that benchmark’s single-threaded IPC on a dedicated
processor, and the label atop each bar reports the reduction in single-thread performance.
Figure 1 shows under the ICOUNT resource allocation policy, the performance of individual
threads is reduced by roughly 30% across all the workloads.

Our work investigates resource allocation policies for SMT processors that preserve, as
much as possible, the single-thread performance of designated high-priority or “foreground”
threads, while still permitting other low-priority or “background” threads to share resources.
Our approach allocates resources to foreground threads whenever they can use them and
regardless of how inefficiently those resources might be used, thus permitting foreground
threads to run as fast as they would have run on a dedicated SMT machine. At the
same time, we only allocate spare resources to background threads that foreground threads
would have otherwise left idle, thus allowing background threads to share resources without
degrading foreground thread performance. Since the background threads on such an SMT
machine are imperceptible to the foreground threads (at least from a resource sharing
standpoint), we refer to the background threads as transparent threads.

Transparent threads are ideal for performing low-priority or non-critical computations.
Several applications of multithreading involve such low-priority computations, and thus
map naturally onto transparent threads:
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Process Scheduling. Transparent threads can assist in scheduling multiprogrammed
workloads onto SMT processors. When a latency-sensitive process enters a multipro-
grammed workload (for example, when an interactive process receives an event), all non-
latency-sensitive processes can be down-graded to run as transparent threads. During the
time that the latency-sensitive or foreground process is active, the transparent threads yield
all processor resources necessary for the foreground process to run as fast as possible. At
the same time, the transparent threads are not shut out completely, receiving any resources
that the foreground process is unable to use.

Subordinate Multithreading. Transparent threads can support subordinate multi-
threading [3, 4]. Subordinate threads perform computations on behalf of a primary thread
to increase its performance. Recently, there have been several proposals for subordi-
nate multithreading, using subordinate threads to perform prefetching (also known as pre-
execution) [5, 6, 7, 8, 9, 10], cache management [11], and branch prediction [3]. Unfortu-
nately, the benefit of these techniques must be weighed against their cost. If the overhead
of subordinate computation outweighs the optimization benefit, then applying the opti-
mization may reduce rather than increase performance. For this reason, detailed profiling
is necessary to determine when optimizations are profitable so that optimizations can be
applied selectively to minimize overhead.

Transparent threads enable subordinate multithreading optimizations to be applied all
the time. Since transparent threads never take resources away from foreground threads, sub-
ordinate threads that run as transparent threads incur zero overhead; hence, optimizations
are always profitable, at worst providing zero gain. With transparent threading support,
a programmer (or compiler) could apply subordinate threading optimizations blindly. Not
only does this relieve the programmer from having to perform profiling, but it also increases
the optimization coverage resulting in potentially higher performance.

Performance Monitoring. Finally, transparent threads can execute profiling code. Pro-
filing systems often instrument profile code directly into the application [12, 13, 14]. Un-
fortunately, this can result in significant slowdown for the host application. To minimize
the impact of the instrumentation code, it may be possible to perform the profiling func-
tionality inside transparent threads. Similar to subordinate multithreading, profile-based
transparent threads would not impact foreground thread performance, and for this reason,
could enable the use of profiling code all the time.

This paper investigates the mechanisms necessary to realize transparent threads for
SMT processors. We identify the hardware resources inside a processor that are critical
for single-thread performance, and propose techniques to enable background threads to
share them transparently with foreground threads. In this paper, we study the transparent
sharing of two resources that impact performance the most: instruction slots and instruction
buffers. We also discuss transparently sharing a third resource, memories, but we do not
evaluate these solutions in this paper. Next, we propose techniques to boost transparent
thread performance. Using our basic resource sharing mechanisms, transparent threads
receive hardware resources only when they are idle. Under these conservative assumptions,
transparent threads can exhibit poor performance. We propose additional techniques that
detect when resources held by foreground threads are not critical to their performance, and
aggressively reallocate them to transparent threads.
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To study the effectiveness of our techniques, we undertake an experimental evaluation
of transparent threads on a detailed SMT simulator. Our evaluation proceeds in two parts.
First, we study transparent threads in the context of multiprogramming. These experiments
stress our mechanisms using diverse workloads, and reveal the most important mechanisms
for enforcing transparency across a wide range of applications. We find our mechanisms
are quite effective, permitting low-priority processes running as transparent threads to in-
duce less than 1% performance degradation on high-priority processes (excluding cache and
branch predictor interference). Furthermore, our mechanisms degrade the performance of
transparent threads by only 23% relative to an equal priority scheme. Second, we study
Transparent Software Prefetching (TSP), an implementation of software data prefetching of
affine and indexed array references [15] using transparent threads. By off-loading prefetch
code onto transparent threads, we achieve virtually zero-overhead software prefetching. We
show this enables software prefetching for all candidate memory references, thus eliminat-
ing the need to perform profiling a priori to identify cache-missing memory references. Our
results show TSP without profile information achieves a 9.41% gain across 6 SPEC bench-
marks, whereas conventional software prefetching guided by cache-miss profiles increases
performance by only 2.47%.

The rest of the paper is organized as follows. Section 2 presents our mechanisms in
detail. Next, Section 3 describes our simulation framework used to perform the experimental
evaluation. Then, Section 4 studies transparent threads in the context of multiprogramming
and Section 5 studies TSP. Section 6 discusses related work. Finally, Section 7 concludes
the paper.

2. Transparent Threads

This section presents the mechanisms necessary to support transparent threads. First,
Section 2.1 discusses the impact of resource sharing on single-thread performance in an SMT
processor. Next, Section 2.2 presents the mechanisms for transparently sharing two classes
of resources, instruction slots and buffers, and discusses possible solutions for transparently
sharing a third class, memories. Finally, Section 2.3 presents the mechanisms for boosting
transparent thread performance.

2.1 Resource Sharing

Figure 2 illustrates the hardware resources in an SMT processor pipeline. The pipeline con-
sists of three major components: fetch hardware (multiple program counters, a fetch unit,
a branch predictor, and an I-cache), issue hardware (instruction decode, register rename,
instruction issue queues, and issue logic), and execute hardware (register files, functional
units, a D-cache, and a reorder buffer). Among these hardware resources, three are dedi-
cated. Each context has its own program counter and return stack (the return stack is part
of the branch predictor module in Figure 2). In addition, each context effectively has its
own register file as well since the integer and floating point register files, while centralized,
are large enough to hold the architected registers from all contexts simultaneously. All other
hardware resources are shared between contexts.

Simultaneously executing threads increase processor throughput by keeping shared hard-
ware resources utilized as often as possible, but degrade each others’ performance by com-
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Figure 2: SMT processor hardware (diagram adapted from [1]). Each shared hardware resource
is labeled with a letter signifying one of three resource classes: instruction slots (S),
instruction buffers (B), and memories (M).

peting for these resources. The goal of transparent threading, therefore, is to allocate a
shared resource to a background thread only when it is not competing with a foreground
thread for the same resource. To provide more insight, we group the shared hardware re-
sources into three classes–instruction slots, instruction buffers, and memories–and discuss
their resource allocation properties. Each shared resource in Figure 2 is labeled with its
resource class, using the labels “S,” “B,” and “M,” respectively.

Instruction slots are pipeline stages. The fetch, decode, rename, issue, writeback, and
commit stages contain instruction slots, typically equal in number to the width of the ma-
chine. In addition, functional units also contain slots, typically one per functional unit per
cycle of latency (assuming a fully pipelined unit). Instruction buffers hold stalled instruc-
tions. Figure 2 shows four buffers: the instruction fetch queue holds fetched instructions
waiting to be decoded and renamed, the integer and floating point instruction queues hold
instructions waiting on operands and/or functional units, and the reorder buffer holds in-
structions waiting to commit. Finally, memories are cache structures. The I- and D-caches
as well as the branch predictor tables in Figure 2 make up this category.

The ramifications for allocating a shared resource to a background thread depend on
its resource class. Allocating an instruction slot to a background thread impacts the fore-
ground thread on the current cycle only. Instructions normally occupy slots for a single
cycle. While there are exceptions to this rule (for example a load instruction that suffers a
cache miss in its data-cache access stage), we find these cases do not create resource con-
flicts frequently. Therefore, background threads can use instruction slots transparently as
long as there is no conflict with the foreground thread on the cycle of allocation. In con-
trast, allocating an instruction buffer entry to a background thread potentially impacts the
foreground thread on future cycles. Instructions typically occupy buffers for many cycles,
particularly in the reorder buffer where instructions remain until all preceding instructions
(including those performing long-latency operations) commit. Therefore, allocating a buffer
entry to a background thread can cause resource conflicts with the foreground thread in the
future even if the resource is idle on the cycle of allocation.
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Compared to instruction slots and buffers, memory resource sharing has a less direct
impact on foreground thread performance. Rather than taking an execution resource away
from the foreground thread, the use of memory resources by a background thread can
increase the number of performance-degrading events experienced by the foreground thread
(i.e., branch mispredictions and cache misses). Similar to instruction buffers, the impact
does not occur at the time of use, but rather, at a point in the future.1

2.2 Transparency Mechanisms

Having discussed the resource sharing problem in Section 2.1, we now present several mecha-
nisms that permit background threads to share resources transparently with the foreground
thread. We present one mechanism for sharing instruction slots, two for sharing instruction
buffers, and finally, we discuss possible solutions for sharing memories.

Instruction Slots: Slot Prioritization. Since instruction slots are normally held for
a single cycle only, we allocate an instruction slot to a background thread as long as the
foreground thread does not require the slot on the same cycle. If the foreground thread
competes for the same instruction slot resource, we give priority to the foreground thread
and retry the allocation for the background thread on the following cycle. We call this
mechanism slot prioritization.

As described in Section 2.1, every pipeline stage has instruction slots; however, we
implement slot prioritization in the fetch and issue stages only. We find that prioritizing
slots in additional pipeline stages does not increase the transparency of background threads.
To implement slot prioritization in the fetch stage, we modify the SMT processor’s fetch
priority scheme. Our default scheme is ICOUNT [1]. When choosing the threads to fetch
from on each cycle, we artificially increase the instruction count for all background threads
by the total number of instruction window entries, thus giving fetch priority to foreground
threads always regardless of their instruction count values. Background threads receive
fetch slots only when the foreground thread cannot fetch, for example due to a previous
I-cache miss or when recovering from a branch misprediction. Slot prioritization in the issue
stage is implemented in a similar fashion. We always issue foreground thread instructions
first; background thread instructions are considered for issue only when issue slots remain
after all ready foreground thread instructions have been issued.

Instruction Buffers: Background Thread Instruction-Window Partitioning. Com-
pared to instruction slots, transparently allocating instruction buffer resources is more chal-
lenging because resource allocation decisions impact the foreground thread on future cycles.
It is impossible to guarantee at allocation time that allocating an instruction buffer entry
to a background thread will not cause a resource conflict with the foreground thread. De-
termining this would require knowing for how long the background thread will occupy the
entry as well as knowing the number of buffer entries the foreground thread will request in
the future.

We propose two solutions for transparently allocating instruction buffers. The first
solution is the background thread instruction-window partitioning mechanism, illustrated in

1. One shared resource left out of our discussion here is rename registers. From our experience, there is
very little contention on rename registers given a reasonable number of them. Hence, we do not consider
rename register sharing in our design of transparent threads.
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Figure 3: Background thread instruction-window partitioning mechanism. Dark shaded blocks de-
note foreground thread instructions, while light shaded blocks denote background thread
instructions.

Figure 3. In this mechanism, we limit the maximum ICOUNT value for the background
threads. When a background thread reaches this instruction count limit, its fetch stage
is locked to prevent it from fetching further and consuming additional instruction buffer
entries. The background thread remains locked out of the fetch stage until its ICOUNT
value drops. Effectively, this approach imposes a hard partition on the buffer resources and
never permits the background thread to overstep this partition, as shown in Figure 3.

The background thread instruction-window partitioning scheme ensures the total num-
ber of background thread instructions in the instruction fetch queue and the reorder buffer
never exceeds its instruction count limit. Notice this does not guarantee that background
threads never take instruction buffer resources away from the foreground thread. If the
foreground thread tries to consume most or all of the instruction buffer resources, it can
still “collide” with the background threads in the buffers and be denied buffer resources.
However, this scheme limits the damage that background threads can inflict on the fore-
ground thread. By limiting the maximum number of buffer entries allocated to background
threads, a large number of entries can be reserved for the foreground thread. Another
drawback of this mechanism is that it limits the instruction window utilization for the
background thread, and therefore degrades background thread performance. As Figure 3
illustrates, even when additional “free” reorder buffer entries are available, the background
thread cannot make use of them if it has reached its ICOUNT limit due to the hard partition.
Instruction Buffers: Background Thread Flushing. In our second scheme for trans-
parently allocating instruction buffers, we permit background threads to occupy as many
instruction buffer entries as they can (under the constraint that the foreground thread gets
all the fetch slots it requests), but we pre-emptively reclaim buffer entries occupied by
background threads when necessary. We call this mechanism background thread flushing.

Background thread flushing works in the following manner. First, we trigger background
thread flushing whenever the foreground thread tries to allocate an instruction buffer entry
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Figure 4: Background thread flushing mechanism - (a) collision between background and foreground
threads in the reorder buffer triggers flushing, and (b) state of the buffers after flushing.
Dark shaded blocks denote foreground thread instructions, while light shaded blocks
denote background thread instructions.

but all entries of that type are filled. There are four instruction buffers, as shown in Figure 2,
whose allocation can trigger flushing: the instruction fetch queue, the integer and floating
point instruction queues, and the reorder buffer. Among these four instruction buffers,
we have observed that reorder buffer contention is responsible for the most performance
degradation in the foreground thread (in fact, contention for the other instruction buffers
usually occurs when the reorder buffer is full). For simplicity, we trigger flushing only when
the foreground thread is unable to allocate a reorder buffer entry. Figure 4(a) illustrates
such a scenario where the foreground and background threads have collided in the reorder
buffer, blocking the entry of a new foreground thread instruction. At this point, we trigger
flushing.

Once flushing is triggered, we select a background thread to flush. We compare the
ICOUNT values of all background threads and pick the thread with the largest value. From
this thread, we flush the N youngest instructions in the reorder buffer, where N is the
width of the machine. (If the selected background thread occupies fewer than N reorder
buffer entries, we flush all of its entries). Figure 4(b) illustrates the state of the buffers after
flushing has been applied to the example in Figure 4(a). In addition to flushing the reorder
buffer, we also flush any instructions in the integer or floating point instruction queues
corresponding to flushed reorder buffer entries, and we flush all instruction fetch queue
entries belonging to this thread as well. Finally, we roll back the thread’s program counter
and register file map to the youngest unflushed instruction. Notice our flushing mechanism
is similar to branch misprediction recovery; therefore, most of the hardware necessary to
implement it already exists. However, our mechanism requires checkpointing the register
file map more frequently since we flush to an arbitrary point in the reorder buffer rather
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than to the last mispredicted branch. In Section 3, we will discuss techniques for reducing
the cost of implementing background thread flushing.

Compared to background thread instruction-window partitioning, background thread
flushing requires more hardware support; however, it potentially permits background threads
to share instruction buffer resources more transparently. Background thread flushing guar-
antees the foreground thread always gets instruction buffer resources, using pre-emption
to reclaim resources from background threads if necessary. At the same time, background
thread flushing can provide higher throughput to background threads compared to back-
ground thread instruction-window partitioning. If the foreground thread does not use a
significant number of instruction buffer entries, the background threads can freely allocate
them because there is no limit on the maximum number of entries that background threads
can hold.

Memories: Possible Solutions. As our results in Section 4 will show, sharing instruc-
tion slot and instruction buffer resources has the greatest impact on foreground thread
performance, while sharing memories has a less significant performance impact. For this
reason, we focus on the first two classes of resources, and we do not evaluate mechanisms
for transparently sharing memories in this paper.

We believe memory resources, e.g., branch predictor tables and caches, can be trans-
parently shared using approaches similar to those described above. One possible approach
is to limit the maximum number of locations that a background thread can allocate in
the memories. Memory resources are used by mapping an address to a memory location.
For branch predictors, a combination of the branch address and a branch history pattern is
typically used to index into the branch predictor table. For caches, a portion of the effective
memory address is used to index into the cache. Consequently, utilization of the memory
resources can be limited by modifying the mapping function and using a reduced number of
address bits to form the index. Background threads can use the modified mapping function,
hence using a fewer number of memory locations. Foreground threads can use the normal
mapping function to access the full resources provided by the memories.

2.3 Performance Mechanisms

In Section 2.2, we focused on maintaining background thread transparency; however, achiev-
ing high background thread performance is also important. Unfortunately, as Section 4 will
show, the resource sharing mechanisms presented in Section 2.2 can starve background
threads, leading to poor performance. This section presents several additional mechanisms
for increasing resource allocation to background threads without sacrificing transparency.
We present one mechanism for increasing fetch slot allocation, and two mechanisms for
increasing instruction buffer allocation.

Fetch Instruction Slots: Fetch Partitioning. The most important instruction slot
resources are the fetch slots because the frequency with which a thread receives fetch slots
determines its maximum throughput. As described in Section 2.2, fetch slot prioritization
always gives priority to the foreground thread by artificially increasing the ICOUNT values
of the background threads. Even though the foreground thread always gets priority for
fetch, the background thread can still get a significant number of fetch slots if the SMT
employs an aggressive fetch partitioning scheme.
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Figure 5: Slot Prioritization with the ICOUNT.2.N fetch partitioning mechanism. (a) First, the
foreground thread is allocated all the fetch slots it needs. (b) Then, the background
thread is allocated the remaining fetch slots.

The most basic fetch partitioning scheme is to permit only one thread to fetch every
cycle, and to give all the fetch slots to that single thread. Assuming an ICOUNT fetch
priority scheme, this basic fetch partitioning scheme is called ICOUNT.1.N [1], where N is
the fetch width. Under ICOUNT.1.N with slot prioritization, background threads receive
fetch slots only when the foreground thread cannot fetch at all. If the foreground thread
fetches even a single instruction, all N fetch slots on that cycle are allocated to the fore-
ground thread since only one thread can fetch per cycle. In our SMT processor model, we
assume the only times the foreground thread cannot fetch are 1) if it has suffered an I-cache
miss, in which case it stalls until the cache miss is serviced, or 2) if it has suffered a branch
mispredict, in which case it stalls until mispredict recovery completes.

If instead of allowing only a single thread to fetch per cycle, multiple threads are al-
lowed to fetch per cycle, then background threads can receive significantly more fetch slots.
In this paper, we evaluate the ICOUNT.2.N [1] fetch partitioning scheme which chooses
up to N instructions for fetch from 2 threads every cycle. Under ICOUNT.2.N with slot
prioritization, the foreground thread still gets highest priority for fetch; however, back-
ground threads can fetch anytime the foreground thread is unable to consume all N fetch
slots on a given cycle. Consider the slot allocation sequence illustrated in Figure 5. The
ICOUNT.2.N fetch partitioning scheme fetches one cache block each from the foreground
thread and the background thread. The slot prioritization transparency mechanism first
allocates all the fetch slots needed to the foreground thread, as shown in Figure 5(a). Under
the ICOUNT.1.N scheme, the background thread would not be able to get any fetch slots
on the cycle depicted in Figure 5(a). However, with the ICOUNT.2.N fetch partitioning
mechanism, any of the unused fetch slots will be allocated to the background thread, as
shown in Figure 5(b).

In our SMT processor model, we assume the foreground thread terminates fetching
on a given cycle if it encounters a predict-taken branch or if it fetches up to an I-cache
block boundary. Under these assumptions, it is rare for the foreground thread to fetch N
instructions per cycle, opening up significantly more spare slots for background threads to
consume.

Instruction Buffers: Foreground Thread Instruction-Window Partitioning. The
combination of mechanisms described in Section 2.2 can easily starve background threads
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of instruction buffer resources. Since the foreground thread always gets fetch priority under
slot prioritization, and since the background thread’s allocation of instruction buffer entries
is limited under either background thread instruction-window partitioning or background
thread flushing, it is possible for the foreground thread to consume all instruction buffer
resources. Once this happens, the background thread may rarely get buffer entries even if
it is allocated fetch slots.

We propose two solutions for increasing background thread instruction buffer allocation
that mirror the mechanisms for transparently allocating instruction buffers presented in
Section 2.2. First, just as we limit the maximum ICOUNT value for background threads,
we can also limit the maximum ICOUNT value for foreground threads. When the foreground
thread reaches this instruction count limit, it is not allowed to consume additional fetch
slots until its ICOUNT value drops. We call this mechanism foreground thread instruction-
window partitioning.

By limiting the maximum number of foreground thread instructions in the instruction
buffers, we reserve some buffer entries for the background threads. However, similar to
background thread instruction-window partitioning, this approach is not completely trans-
parent since it allows background threads to take resources away from the foreground thread.
The performance impact can be minimized, though, by choosing a large foreground thread
ICOUNT limit.

Instruction Buffers: Foreground Thread Flushing. Our results in Section 4 will
show foreground thread instruction window partitioning improves the throughput of the
background thread at the expense of its transparency. Foreground thread flushing is a more
dynamic mechanism that allows the background thread to reclaim instruction buffer entries
from the foreground thread. Unfortunately, arbitrary flushing of the foreground thread,
just like instruction window partitioning, will degrade the performance of the foreground
thread. However, if triggering of foreground thread flushing is carefully chosen, it is possi-
ble to reclaim instruction buffer entries from the foreground thread without impacting its
performance.

We trigger foreground thread flushing when a cache-missing load from the foreground
thread reaches the head of the reorder buffer. Our experiments show applications frequently
fill up the reorder buffer whenever there is a load miss at its head. When a cache-missing
load is at the head of the reorder buffer, the rest of the instruction buffer entries are
stagnant (because of in-order commit) and the foreground thread cannot proceed until the
load instruction at the head of the reorder buffer completes. Hence, flushing these stagnant
instructions will not impact the foreground thread performance as long as they are restored
before the cache-missing load completes. Once the foreground thread instructions have
been flushed, we temporarily prevent the foreground thread from fetching and reclaim the
flushed entries. After a certain number of cycles, which is determined by the number of
cycles left before the load at the reorder buffer head completes, the foreground thread is
allowed to commence fetching again.

Figure 6 presents a pictorial representation of a foreground thread flush sequence. In
Figure 6(a), the reorder buffer is full with foreground thread instructions which are stagnant
due to a load miss at the head of the reorder buffer. New background thread instructions
cannot enter the reorder buffer because of this condition. Figure 6(b) shows our mechanism
triggers a flush of a certain number of stagnated foreground thread instructions from the tail,
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Figure 6: Foreground thread flushing mechanism - (a) a reorder buffer full of foreground thread
instructions and with a cache-missing load at its head triggers a flush, and (b) state of the
buffers after flushing. Dark shaded blocks denote foreground thread instructions, while
light shaded blocks denote background thread instructions.

and locks out the foreground thread from fetching. Similar to background thread flushing,
we flush the youngest foreground thread instructions from the tail of the reorder buffer,
all corresponding instructions in the integer and floating point instruction queues, and all
instructions in the instruction fetch queue belonging to the foreground thread. Now, the
background thread can make forward progress using these freed up buffer entries. After a
certain number of cycles, the foreground thread is allowed to fetch again, thereby reclaiming
the flushed out entries.

Residual Cache Miss Latency. To avoid degrading foreground thread performance,
the number of flushed instructions, F , and the number of cycles we allow for flush recovery,
T , must be commensurate with the number of cycles that the cache-missing load remains
stalled at the head of the reorder buffer. We call this time the residual cache-miss latency,
R. If R is large, we can afford to flush more foreground thread instructions since there is
more time for recovery, thus freeing a larger number of buffer entries. However, if R is small,
we must limit the number of flushed instructions since the recovery time is itself limited.
Because we expect R to vary on every cache miss, we rely on hardware to estimate R each
time we initiate foreground thread flushing, and then select appropriate F and T values to
dynamically control the number of flushed instructions and the timing of flush recovery. In
Section 3, we will discuss the choice of F and T values as a function of R. One important
issue, though, is how do we determine R?

We use a cycle counter for every foreground thread load instruction that suffers a cache
miss to estimate R. When a load instruction initially suffers a cache miss, we allocate a
cycle counter to the load, clear the counter contents, and increment the counter on every
cycle thereafter. When the cache-missing load reaches the head of the reorder buffer and
stalls, we use the following heuristic to estimate R. We assume a cache-missing load that
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reaches the head of the reorder buffer is either a) an L1 miss that hits in the L2 cache if it
has been in the reorder buffer for less than the L2 hit time, or b) an L2 miss if it has been
in the reorder buffer for more than the L2 hit time. The residual cache-miss latency is then
calculated by subtracting the counter value from the L2 hit time (when (a) is true) or the
main memory latency (when (b) is true).

Overestimating the residual cache-miss latency can degrade the foreground thread per-
formance because it will lead to overly aggressive flushing. We conducted experiments to
compare the residual cache-miss latencies estimated using the above heuristic against the
actual values measured by the simulator. Our experiments show our heuristic predicts the
residual cache-miss latencies accurately in a majority of our applications. When a discrep-
ancy exists between the estimated values and the measured values, our heuristic tends to
underestimate rather than overestimate residual cache-miss latency.

3. Simulation Framework

Our simulation framework is based on the SMT simulator from [16]. This simulator uses
the out-of-order processor model from SimpleScalar v2.0, augmented to simulate an SMT
pipeline. Unless otherwise specified, our experiments use the baseline simulator settings
reported in Table 1. These settings model a 4x8-way issue SMT processor with 32-entry
integer and floating point instruction queues and a 128-entry reorder buffer. We also model
a hybrid gshare/bimodal branch predictor. As indicated in Table 1, we assume a 3-cycle
penalty after detecting a branch mispredict to recover from the wrong path of execution.
In Sections 4.2 and 4.3, we initially assume other threads can fetch during this wrong-path
recovery delay. Then, at the end of Section 4.3, we study a conservative wrong-path recovery
policy that removes this assumption. Finally, we model a memory hierarchy consisting of a
split 32K L1 cache and a unified 512K L2 cache. The caches and main memory are simulated
faithfully; however, we do not model the queues between different memory hierarchy levels
(e.g., processor store buffers, write buffers, etc.). For our applications, we observe only
modest memory concurrency; hence, we believe small queues would be sufficient to prevent
stalls caused by these structures.

To evaluate transparent threads, we extended our basic SMT simulator to model the
mechanisms presented in Section 2, namely the two mechanisms for sharing instruction
slots (slot prioritization and fetch partitioning) and the four mechanisms for sharing in-
struction buffers (background and foreground thread instruction window partitioning, and
background and foreground thread flushing). When simulating our instruction window par-
titioning schemes, we assume a maximum background and foreground thread ICOUNT limit
of 32 and 112 instructions, respectively. For fetch partitioning, our simulator models both
the ICOUNT.1.8 and ICOUNT.2.8 schemes, as discussed in Section 2.3 (our simulator also
models an ICOUNT.1.16 scheme–we will describe this later in Section 4.3). ICOUNT.2.8
requires fetching 16 instructions from 2 threads (8 from each thread) on every cycle [1],
and using slot prioritization to select 8 instructions out of the 16 fetched instructions. To
provide the fetch bandwidth necessary, our I-cache model contains 8 interleaved banks, and
accounts for all bank conflicts. In addition to simulating contention for I-cache banks, we
also simulate contention for rename registers. We assume all contexts share 100 integer and
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Processor Parameters

Hardware Contexts 4 Issue Width 8
Fetch Queue Size 32 entries Instruction Queue Size 32 Int, 32 FP entries
Load-Store Queue Size 64 entries Reorder Buffer Size 128 entries
Int/FP Units 8/8 Int Latency 1 cycle
FP Add/Mult/Div Latency 2/4/12 cycles Rename Registers 100 Int, 100 FP

Branch Predictor Parameters

Branch Predictor Hybrid gshare/Bimodal gshare/Bimodal Size 4096/2048 entries
Meta Table Size 1024 entries BTB Size 2048 entries
Return-Address-Stack Size 8 entries Mispredict Recovery 3 cycles

Memory Parameters

L1 Cache Size 32K I and 32K D (split) L2 Cache Size 512K (unified)
L1/L2 Block Size 32/64 bytes L1/L2 Associativity 4-way/4-way
L1/L2 Hit Time 1/10 cycles Memory Access Time 122 cycles

Table 1: Baseline SMT simulator settings used for most of the experiments.

R < 8 F=0 T=0
8 ≤ R < 16 F=8 T=4
16 ≤ R < 32 F=16 T=8

32 ≤ R F=48 T=16

Table 2: Choice of the number of instructions to flush, F , and the number of flush recovery cycles,
T , as a function of the residual cache-miss latency, R.

100 floating point rename registers in addition to the per-context architected registers, as
indicated in Table 1.

As described in Section 2.3, our foreground thread flushing mechanism dynamically se-
lects the number of instructions to flush, F , and the number of flush recovery cycles, T ,
based on the residual cache-miss latency, R, at the time flushing is triggered. Table 2 re-
ports the F and T values used by our simulator for a range of R values. Since our flushing
mechanisms (for both background and foreground threads) flush to an arbitrary point in
the reorder buffer, they require frequent register map checkpointing (see Section 2.2). For
maximum flexibility, checkpointing every instruction would be necessary. To reduce hard-
ware cost, however, our simulator models checkpointing every 8th instruction only. When
flushing is triggered, we compute the number of instructions to flush as normal, described
in Sections 2.2 and 2.3 for background and foreground thread flushing, respectively. Then,
we flush to the nearest checkpointed instruction, rounding up when flushing the background
thread (more aggressive) and rounding down when flushing the foreground thread (more
conservative).

In addition to the hardware specified in Tables 1 and 2, our simulator also provides ISA
support for multithreading. We assume support for a fork instruction that sets the program
counter of a remote context and then activates the context. We also assume support for
suspend and resume instructions. Both instructions execute in 1 cycle; however, suspend
causes a pipeline flush of all instructions belonging to the suspended context. Finally, we
assume support for a kill instruction that terminates the thread running in a specified
context ID. Our multithreading ISA support is used extensively for performing Transparent
Software Prefetching, described later in Section 5.
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Name Type Input FastFwd Sim

VPR SPECint 2000 reference 60M 233M
BZIP SPECint 2000 reference 22M 126M
GZIP SPECint 2000 reference 170M 140M
EQUAKE SPECfp 2000 reference 18M 1186M
ART SPECfp 2000 reference 20M 71M
GAP SPECint 2000 reference 105M 157M
AMMP SPECfp 2000 reference 110M 2439M
IRREG PDE Solver 144K nodes 29M 977M

Table 3: Benchmark summary. The first three columns report the name, type, and inputs for each
benchmark. The last two columns report the number of instructions in the fast forward
and simulated regions.

To drive our simulation study, we use the 8 benchmarks listed in Table 3. Four of these
benchmarks are SPECInt CPU2000 benchmarks, three are SPECfp CPU2000 benchmarks,
and the last is an iterative PDE solver for computational fluid dynamics problems. In
all our experiments, we use functional simulation to fast forward past each benchmark’s
initialization code before turning on detailed simulation. The size of the fast forward and
simulated regions are reported in the last two columns of Table 3.

4. Evaluating Transparent Threads

Our experimental evaluation of transparent threads consists of two major parts. First, in
this section, we characterize the performance of our transparent threading mechanisms.
Then, in Section 5, we investigate using transparent threads to perform software data
prefetching.

4.1 Methodology

This section characterizes the performance of our transparent threading mechanisms by
studying them in the context of multiprogramming. We perform several multiprogramming
experiments, each consisting of 2 - 4 benchmarks running simultaneously on our SMT simu-
lator. A single benchmark from the workload is selected to run as a foreground thread, while
all other benchmarks run as background threads. From these experiments, we observe the
degree to which our mechanisms maintain background thread transparency (Section 4.2)
as well as the ability of our mechanisms to increase transparent thread throughput (Sec-
tion 4.3).

From the 8 applications listed in Table 3, we use the first 5 for our multiprogramming
experiments, grouping benchmarks together based on resource usage characteristics. Of
particular significance is a benchmark’s reorder buffer occupancy. Benchmarks with high
reorder buffer occupancy (typically caused by frequent long-latency cache misses) use more
instruction buffer resources, whereas benchmarks with low reorder buffer occupancy use
fewer instruction buffer resources. Among our 5 benchmarks, BZIP and ART have high
occupancy, EQUAKE and GZIP have low occupancy, while VPR has medium occupancy.
In order to stress our mechanisms and to study their behavior under diverse workload
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Figure 7: Normalized IPC of the foreground thread when running simultaneously with a single
background thread. The bars represent different transparent sharing mechanisms: equal
priority (EP), slot prioritization (SP), background thread instruction window partitioning
(BP), background thread flushing (BF), private caches (PC), and private predictors (PP).

characteristics, we group together benchmarks that exhibit both high and low reorder buffer
occupancy, using both types as foreground and background threads.

4.2 Background Thread Transparency

Figures 7 and 8 report the normalized IPC of the foreground thread when running simulta-
neously with a single background thread and with three background threads, respectively.
Groups of bars represent sets of simultaneously running benchmarks, each specified with
a label that names the foreground benchmark first followed by the background bench-
mark(s). Bars within each group represent different transparent sharing mechanisms from
Section 2.2 applied incrementally. In particular, the first four bars report normalized IPC
with no mechanisms (i.e., all threads have equal priority), with slot prioritization, with
background thread instruction window partitioning and slot prioritization, and with back-
ground thread flushing and slot prioritization, labeled EP, SP, BP, and BF, respectively.
All experiments use the ICOUNT.2.8 fetch partitioning scheme, with all other background
thread performance mechanisms disabled. Finally, all bars are normalized to the IPC of
the foreground thread running on a dedicated SMT machine (i.e., without any background
threads).

Figure 7 shows background thread flushing with slot prioritization (BF bars) is the most
effective combination of transparent sharing mechanisms. With these mechanisms, the fore-
ground thread achieves 97% of its single-thread performance averaged across the 8 bench-
mark pairs, compared to only 70% of single-thread performance when pairs of benchmarks
are run with equal priority (EP bars). Background thread instruction window partitioning
with slot prioritization (BP bars) also provides good transparency, with the foreground
thread achieving 91% of its single-thread performance; however, our results show BP is less
effective than BF in all cases. Slot prioritization alone (SP bars) is the least effective, allow-
ing the foreground thread to achieve only 84% of its single-thread performance. Figure 8
shows the same qualitative results as Figure 7, demonstrating our mechanisms are just as
effective when maintaining transparency for multiple background threads.

Having quantified the transparency of our background threads, we now examine the
extent to which the foreground thread’s performance degradation is due to sharing memo-
ries, a type of resource sharing that our mechanisms do not address. In our SMT model,
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Figure 9: Fetch slot usage for our benchmarks when each benchmark is run on a dedicated SMT
processor.

threads share two types of memory structures: caches and branch predictor tables. To iso-
late the impact of sharing these structures on foreground thread performance, we replicate
them, thus removing any contention due to sharing. The last two bars of each group in
Figures 7 and 8 report the normalized foreground thread IPC assuming the best mecha-
nisms (i.e., those used for the BF bars) when each context has private L1 and L2 caches
(PC bars), and when each context has both private caches and a private branch predictor
(PP bars). These results show when cache and branch predictor conflicts are removed, the
foreground thread achieves essentially all of its single-thread performance. We conclude
that our mechanisms enable the background threads to use instruction slots and instruction
buffers in a completely transparent fashion, and that further improvements in foreground
thread performance can only come by addressing memory sharing.

While Figures 7 and 8 quantify the extent to which background threads are transparent,
they do not provide insight into how our mechanisms achieve transparency. To address this
issue, we first study how our benchmarks use processor resources. Figure 9 illustrates the
usage of the fetch stage, a critical SMT resource. In Figure 9, we break down the total
available fetch slots into used and unused slots when each benchmark is run on a dedicated
SMT processor. Unused slots are further broken down into three categories indicating the
cause for the unused slots: wasted slots around a taken branch (after the branch on the
same cycle and before the target on the next cycle), a full instruction fetch queue, and
recovery from a branch mispredict. (A fourth possible category is I-cache stalls, but an
insignificant number of unused slots are due to I-cache stalls in our benchmarks, so we omit
this category in Figure 9).
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Figure 9 sheds light on why our transparent threading mechanisms work. First, the
“IFQ Full” components indicate the degree to which our benchmarks occupy instruction
buffers, showing that BZIP and ART have high instruction buffer occupancy. In Figure 7,
we see that any workload using these benchmarks as a background thread exhibits poor
foreground thread performance under equal priority. When using equal priority, BZIP and
ART frequently compete for instruction buffer entries with the foreground thread, degrading
its performance. Consequently, in these workloads, background thread flushing significantly
improves foreground thread performance since flushing reclaims buffer entries, making the
foreground thread resilient to background threads with high instruction buffer occupancy.
Conversely, Figure 9 shows GZIP and EQUAKE have low instruction buffer occupancy. In
Figure 7, we see that any workload using these benchmarks as a background thread exhibits
reasonable foreground thread performance under equal priority, and only modest gains due
to flushing.

Second, anytime a workload uses a benchmark with a large “IFQ Full” component as
a foreground thread, slot prioritization provides a large foreground thread performance
gain and background thread flushing becomes less important. In Figure 7, the ART-VPR
and ART-EQK (and to some extent, ART-BZIP) workloads exhibit this effect. When slot
prioritization is turned on, ART gets all the fetch slots it requests and thus acquires a large
number of instruction buffer entries (due to its high instruction buffer occupancy), resulting
in a large performance boost. At the same time, the background thread receives fewer buffer
entries, reducing the performance impact of flushing.

4.3 Transparent Thread Performance

Figure 10 reports the normalized IPC of the background thread using background thread
flushing and slot prioritization for the multiprogrammed workloads from Figure 7. Bars
within each workload group represent different transparent thread performance mechanisms
from Section 2.3 applied incrementally. Specifically, we report normalized IPC with the
ICOUNT.1.8 fetch partitioning scheme without and with foreground thread flushing, with
the ICOUNT.2.8 fetch partitioning scheme without and with foreground thread flushing,
with the ICOUNT.2.8 scheme and foreground thread instruction window partitioning, and
with no mechanisms (i.e., equal priority), labeled 1B, 1F, 2B, 2F, 2P, and EP, respectively.
All bars are normalized to the IPC of the background thread running on a dedicated SMT
machine.

Comparing the 4 left-most group of bars in Figure 10 reveals two results. First, we see the
ICOUNT.1.8 fetch partitioning scheme provides the lowest background thread performance,
allowing the background thread to achieve only 19% of its single-thread performance on
average. Moreover, going from ICOUNT.1.8 (1B and 1F bars) to ICOUNT.2.8 (2B and 2F
bars) provides a significant increase in background thread IPC. This is particularly true in
workloads where the foreground thread exhibits a large number of “Taken Branch” unused
fetch slots (e.g., VPR and EQUAKE as shown in Figure 9) since this is the resource that
ICOUNT.2.8 exploits compared to ICOUNT.1.8. Second, Figure 10 also shows foreground
thread flushing is important across all workloads, for both ICOUNT.1.8 (1F bars) and
ICOUNT.2.8 (2F bars). With foreground thread flushing, the background thread achieves
38% and 46% of its single-thread performance using the ICOUNT.1.8 and ICOUNT.2.8
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Figure 10: Normalized IPC of the background thread when the foreground thread runs simul-
taneously with a single background thread. The bars represent different transparent
thread throughput mechanisms: ICOUNT.1.8 without (1B) and with (1F) foreground
thread flushing, ICOUNT.2.8 without (2B) and with (2F) foreground thread flushing,
ICOUNT.2.8 with foreground thread window partitioning (2P), and equal priority (EP).
All bars use background thread flushing with slot prioritization.
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neously with a single background thread. The bars represent the ICOUNT.1.16 fetch
configuration without (1.16B) and with (1.16F) foreground thread flushing. All bars
use background thread flushing with slot prioritization.

schemes, respectively. Furthermore, our results show flushing is more important when
the foreground thread has a high instruction buffer occupancy (e.g., ART as shown in
Figure 9). In these workloads, foreground thread flushing can provide the background
thread with significantly more instruction buffer resources, resulting in large performance
gains. Overall, foreground thread flushing combined with ICOUNT.2.8 (2F bars) improves
the IPC of the background thread to within 23% of the equal priority scheme (EP bars).

Compared to ICOUNT.1.8, ICOUNT.2.8 offers two benefits. For one, it exploits a higher
I-cache bandwidth. While both schemes fetch up to 8 instructions per cycle, ICOUNT.2.8
is more likely to achieve this maximum fetch throughput because it performs 2 I-cache
accesses to pull up to 16 instructions from the I-cache (8 for each thread) per cycle, while
ICOUNT.1.8 performs only 1 I-cache access per cycle. Another benefit is ICOUNT.2.8
provides more flexibility during fetch since it fetches from two threads every cycle rather
than just one. To provide insight into the individual importance of these two benefits,
Figure 11 studies another fetch scheme, ICOUNT.1.16. Like ICOUNT.1.8, ICOUNT.1.16
fetches from only one thread per cycle; however, like ICOUNT.2.8, it performs 2 I-cache
accesses per cycle, providing up to 16 fetched instructions and permitting fetch past 1
taken branch every cycle. In Figure 11, we again see the importance of foreground thread
flushing in boosting the throughput of the background thread. Overall, ICOUNT.1.16 with
foreground thread flushing (1.16F bars) allows the background thread to achieve 36% of its
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Figure 12: Normalized IPC of the foreground thread when running simultaneously with a single
background thread. The bars represent different transparent thread throughput mech-
anisms: foreground thread instruction window partitioning (2P), foreground thread
flushing (2F), private caches (PC), and private predictors (PP). All bars use background
thread flushing with slot prioritization.

single-thread performance on average, which is 20% better than no flushing (1.16B bars).2

However, comparing Figures 10 and 11, we see ICOUNT.2.8 still outperforms ICOUNT.1.16,
allowing the background thread to achieve a larger fraction of its single-thread performance
in all cases. This demonstrates that increasing fetch throughput alone cannot match the
performance of ICOUNT.2.8; instead, fetching from multiple threads per cycle provides
noticeable gains in background thread performance.

Returning to Figure 10, we see that foreground thread window partitioning combined
with ICOUNT.2.8 (2P bars) achieves the highest background thread performance, allowing
the background thread to achieve 56% of its single-thread performance. Overall, we see
instruction window partitioning combined with ICOUNT.2.8 improves the IPC of the back-
ground thread to within 13% of the equal priority scheme (EP bars). Although foreground
thread window partitioning provides the highest background thread throughput, we must
also consider its impact on foreground thread performance. Figure 12 plots the normalized
IPC of the foreground thread for several of the experiments in Figure 10. This data shows
that the increased background thread performance of foreground thread instruction window
partitioning compared to foreground thread flushing comes at the expense of reduced fore-
ground thread performance (the 2F bars achieve 95% of single-thread performance whereas
the 2P bars achieve only 84%). We conclude that foreground thread flushing is more de-
sirable since it increases background thread performance without sacrificing transparency.
Similar to Figures 7 and 8, the last two bars of Figure 12 remove cache and branch predictor
conflicts from the 2F bars, showing that practically all of the remaining foreground thread
performance degradation is due to memory sharing.

Instantaneous Behavior. Thus far, we have studied the average overall throughput
of the background thread only; we now investigate instantaneous throughput to provide
insight into the burstiness of the background thread’s progress. In Figure 13, we show
histograms of the fraction of executed instructions belonging to the background thread (y-
axis) over time (x-axis) from two different workloads under the ICOUNT.2.8 scheme with

2. In this section, we only present background thread performance results for ICOUNT.1.16. We also
examined its background thread transparency, and found similar results to the ICOUNT.2.8 scheme
studied in Section 4.2. Overall the foreground thread achieves 97.5% of its single-thread performance
under the ICOUNT.1.16 scheme. We omit the detailed results to conserve space.
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Figure 13: Histogram of the fraction of executed instructions from the background thread when
running simultaneously with a single background thread. This fraction of executed
instructions from the background thread is averaged over an interval of 5000 cycles.

foreground and background thread flushing. The workloads chosen are representative of the
different behaviors we observed, as described below. Each datapoint in these time-based
histograms reports a fraction averaged across a 5000-cycle period. In total, Figure 13 shows
200 datapoints (equivalent to 1 million cycles of execution) per workload.

Our results show that in workloads where the foreground thread has a low/medium
instruction buffer occupancy (e.g., VPR-BZIP, VPR-GZIP, VPR-EQK, VPR-ART, and
EQK-GZIP), the histogram of executed background thread instructions is smooth across
time, hovering around the 40% mark. However, in workloads where the foreground thread
has a high instruction buffer occupancy (e.g., ART-BZIP, ART-VPR, and ART-EQK), the
histogram is spiky, with gaps where the background thread gets a very small fraction of
execution resources. Usually, the gaps last for around 10,000 cycles. These gaps tend
to form during intervals where the foreground thread fills up the instruction buffers but
continues to make progress (i.e., the foreground thread is not stalled on a long-latency
memory operation). Since the foreground thread does not stall during these intervals, our
flushing mechanisms are not triggered. This leads to gaps where a very low fraction of
instructions are executed from the background thread.

Conservative Branch Mispredict Recovery. All our results presented so far assume
an optimistic branch mispredict recovery policy: when a thread detects a mispredicted
branch, we allow other threads to fetch during recovery from the wrong path of execution
(which takes 3 cycles in our processor). In some machines, this assumption may not hold.
For example, part of the recovery delay may involve informing the fetch stage that a par-
ticular thread has suffered a branch mispredict. In this case, the thread may continue to
fetch useless wrong-path instructions after a branch mispredict has occurred, and compete
for fetch slots during its mispredict recovery. By assuming a thread stops fetching im-
mediately on a branch mispredict, we are fetching more non-speculative instructions than
would potentially be possible in some machines. Fortunately, this optimistic use of fetch
bandwidth does not impact the background thread transparency results presented in Sec-
tion 4.2. Slot prioritization gives the foreground thread fetch priority over the background
thread regardless of whether the background thread is recovering from a branch mispredict
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Figure 14: Normalized IPC of the background thread when the foreground thread runs simultane-
ously with a single background thread, and assuming a conservative branch mispredict
recovery policy. All bars correspond to the bars presented in Figure 10.

or not. However, the background thread throughput results from Figures 10 and 11 may
be overly optimistic since we are providing the background thread with fetch slots anytime
the foreground thread is recovering from a branch mispredict.

In Figure 14, we report background thread throughput for the same experiments in
Figure 10, but assuming a conservative branch mispredict recovery policy: the background
thread is not allowed to fetch any instructions during branch mispredict recovery of the fore-
ground thread. Essentially, this makes all the “Unused Branch Mispredict” slots in Figure 9
unavailable to the background thread. Notice this policy is overly conservative. In some
cases, the background thread may still be able to fetch during foreground thread mispredict
recovery, particularly if we employ mechanisms to improve background thread throughput.
However, our intent is to show the worst-case impact of our optimistic assumptions.

The conservative recovery policy has a large impact on the “1B” bars. Compared to Fig-
ure 10, the background thread throughput goes down by 41.8% for these bars in Figure 14.
Without any mechanisms to enhance background thread fetch, the “Unused Branch Mis-
predict” slots are the primary source of fetch bandwidth for the background thread; hence,
removing them has a devastating effect on performance. However, as mechanisms are ap-
plied, background thread throughput becomes more resilient. For the “2B” bars, we see
a smaller 12.8% reduction of the background thread throughput in Figure 14 compared to
Figure 10. ICOUNT.2.8 permits the background thread to exploit “Unused Taken Branch”
slots, reducing the impact of the lost “Unused Branch Mispredict” slots. For the “1F” and
“2F” bars, the background thread throughput is only 9.8% and 1.9% lower, respectively,
when comparing Figures 14 and 10. This is because foreground thread flushing permits the
background thread to also exploit “Unused IFQ Full” slots. Finally, like foreground thread
flushing, foreground thread window partitioning also opens up “Unused IFQ Full” slots for
the background thread. Hence, the “2P” bars in Figure 14 show a modest 6.3% reduction in
background thread throughput compared to Figure 10. Overall, we find our results do not
change qualitatively when using a conservative branch mispredict recovery policy, but since
some cases are impacted significantly, we use this policy in our remaining experiments.3

3. We do not report “EP” bars in Figure 14. The conservative branch mispredict recovery policy would
lower the performance under ”EP” as well. However, this would make our results look better, not worse,
since our transparency and throughput mechanisms would compare more favorably against a lower “EP.”
Moreover, our branch mispredict recovery policy is overly conservative, so it would make EP look worse
(and thus our results look better) than it really would be in a real machine. Hence, in our remaining
results, we use the optimistic branch mispredict recovery policy for the “EP” bars.
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Figure 15: Normalized IPC of the foreground thread when running simultaneously with a sin-
gle background thread on a 4-way machine with a 64-entry reorder buffer. The bars
represent different transparent sharing mechanisms: equal priority (EP), slot prioritiza-
tion (SP), background thread instruction window partitioning (BP), background thread
flushing (BF), private caches (PC), and private predictors (PP).

4.4 Sensitivity Study

Sections 4.2 and 4.3 evaluate our mechanisms assuming the baseline SMT processor specified
in Table 1. In this section, we study the sensitivity of our results to variations in the
simulation parameters by exploring the performance of our mechanisms on a less aggressive
processor. Specifically, we re-run the experiments from Figures 7 and 10 on a 4-way SMT
processor with 16-entry integer and floating point instruction queues, and a 64-entry reorder
buffer. We also reduce the fetch queue size to 16 instruction entries. All other simulator
settings for the sensitivity experiments remain the same as those reported in Table 1.

Transparency mechanisms. First, we study the performance of the foreground thread
on the reduced processor as transparency mechanisms are applied incrementally without any
throughput mechanisms (i.e., re-running the experiments from Figure 7). Figure 15 reports
these experiments. Our first conclusion from Figure 15 is that even in a processor with
limited resources, the combination of background thread flushing with slot prioritization
(BF bars) still succeeds in maintaining the transparency of the background thread, allowing
the foreground thread to achieve 98% of its single-thread performance. However, compared
to the baseline results from Figure 7, the transparency mechanisms are stressed differently
under the resource-constrained processor.

The equal priority scheme (EP bars) allows the foreground thread to achieve only 57% of
its single-thread performance because of the increased contention for the limited processor
resources. Slot prioritization is able to boost the foreground thread performance to only 77%
of its single-thread performance. The remaining improvement in single-thread performance
comes from the background thread flushing mechanism. The effectiveness of the background
thread instruction window partitioning technique is also reduced, with the foreground thread
achieving only 87% of its single-thread performance. From these results, we conclude that
the background thread flushing mechanism becomes even more important for maintaining
single-thread performance of the foreground thread on less aggressive processors.

Performance mechanisms. Next, we study the performance of the background thread
on the reduced processor as the performance mechanisms are applied (i.e., re-running the
experiments from Figure 10). Figure 16 reports these experiments. As in the case of the
foreground thread, the increased contention for processor resources on the reduced proces-
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Figure 16: Normalized IPC of the background thread when the foreground thread runs simultane-
ously with a single background thread on a 4-way machine with a 64-entry reorder buffer.
The bars represent different transparent thread throughput mechanisms: ICOUNT.1.8
without (1B) and with (1F) foreground thread flushing, ICOUNT.2.8 without (2B) and
with (2F) foreground thread flushing, ICOUNT.2.8 with foreground thread window par-
titioning (2P), and equal priority (EP). All bars use background thread flushing with
slot prioritization.

sor leads to lower single-thread performance of the background thread. The equal priority
scheme (EP bars) allows the background thread to achieve only 60% of its single-thread
performance. Similar to the results from Figure 10, Figure 16 shows moving from the
ICOUNT.1.8 fetch partitioning scheme (1B bars) to the ICOUNT.2.8 scheme (2B bars) on
the 4-way SMT processor significantly increases background thread performance. Further-
more, the foreground thread flushing mechanism (2F bars) boosts the background thread
throughput to within 22% of the equal priority scheme, showing that this mechanism is
still effective for the reduced processor. Finally, Figure 16 shows the foreground thread
partitioning mechanism (2P bars) achieves the best performance, resulting in background
thread throughput that is within 15% of the equal priority scheme. However, as was seen for
the baseline processor, this mechanism is not transparent and degrades foreground thread
performance on the reduced processor as well (these results have been omitted to conserve
space).

5. Transparent Software Prefetching: Design and Evaluation

Software prefetching [17, 18, 15] is a promising technique to mitigate the memory latency
bottleneck. It hides memory latency by scheduling non-blocking loads (special prefetch
instructions) early relative to when their results are consumed. While these techniques
provide visible latency-hiding benefits, they also incur limiting runtime overheads.

This section proposes and evaluates a new subordinate multithreading technique, called
Transparent Software Prefetching (TSP). TSP performs software data prefetching by in-
strumenting the prefetch code in a separate prefetch thread rather than inlining it into the
main computation code, as is done in conventional software prefetching. Prefetch threads
run as background threads, prefetching on behalf of the computation thread which runs
as a foreground thread. Because they run transparently, prefetch threads incur near-zero
overhead, and thus almost never degrade the computation thread’s performance.

TSP solves a classic problem associated with software prefetching: determining what to
prefetch. Since conventional software prefetching incurs runtime overhead, it is important
to instrument prefetching only for load instructions that suffer a sufficiently large mem-
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/* Prologue Loop */
for (i = 0; i < PD; i += 8) {
prefetch(&b[i]);

}

1
2
3
4

/* Main Loop */
for (i = 0; i < N−PD; i+=8) {
prefetch(&b[i+PD]);
b = z + b[i];

5
6
7
8
9 }

/* Epilogue Loop */10
for (; i < N; i += 8) {11
z = z + b[i];12

13 }

for (i = 0; i < N; i += 8) {
z = z + b[i];

}

ORIGINAL LOOP

TRANSFORMED LOOP

1
2
3

(a)

(b)

Figure 17: Conventional software prefetching example. (a) Original loop code. (b) Transformed
loop with software prefetching.

ory access latency so that the benefit of prefetching outweighs the cost of executing the
instrumentation code. Identifying the loads for which prefetching is profitable typically
requires gathering detailed cache-miss profiles (e.g., summary [19] or correlation [20] pro-
files). Unfortunately, such profiles are cumbersome to acquire, and may not accurately
reflect memory behavior for arbitrary program inputs. In contrast, TSP eliminates the
need for profiling. Since transparent sharing mechanisms guarantee prefetch threads never
degrade the computation thread’s performance, prefetching becomes profitable for all loads,
regardless of their cache-miss behavior. Consequently, TSP can be applied naively, without
ever worrying about the profitability of a transformation.

5.1 Implementation

Conventional Software Prefetching. As mentioned before, software prefetching sched-
ules prefetch instructions to bring data into the cache before they are consumed by the
program. Conventional software prefetching inlines the prefetch code along with the main
computation code [17, 18, 15]. The inlined prefetches are software pipelined via a loop
peeling transformation.

Figure 17(a) shows a simple code example, and Figure 17(b) illustrates the prefetch
inlining and loop peeling transformations needed to instrument software prefetching for
this code example. The transformations are designed to issue prefetches PD iterations in
advance of the computation, also known as the prefetch distance. First, a prologue loop
(lines 1-4) is inserted to issue the first PD prefetches without executing any computation
code. Then, the main loop (lines 5-9) executes the computation code for all iterations except
for the last PD iterations. This loop also prefetches data PD iterations ahead. Finally, the
epilogue loop (lines 10-13) executes the last PD iterations of the loop without issuing any
prefetches. The prologue, main, and epilogue loops perform the startup, steady-state, and
draining phases of the software pipeline, respectively.

The software instrumentation shown in Figure 17 contributes runtime overhead to pro-
gram execution. If the benefit due to prefetching does not outweigh the overhead due to
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software instrumentation, the overall execution time of the program degrades. Hence, it is
important to instrument prefetching only when its benefit offsets its overhead. Prefetching
is profitable for loads that exhibit high cache-miss ratios. To identify such loads, we acquire
summary cache-miss profiles [19] to measure the miss ratio of individual loads, and evaluate
the profitability of instrumenting prefetching for each load based on the following predicate:

PrefetchOverhead < L1miss rate ∗ L2hit time + L2miss rate ∗ Memlatency (1)

In computing the prefetch overhead, we assume that the instruction count overhead
to prefetch each load is 12 instructions (8 instructions for the prologue loop + 1 prefetch
instruction in the prologue loop + 2 instructions for the prefetch predicate in the main loop
+ 1 prefetch instruction in the main loop), and the average IPC for the loop is 1.5. Hence,
the prefetch overhead is assumed to be 8 (12/1.5) cycles.

Transparent Software Prefetching. Instrumenting TSP involves several steps. First,
we select any loop containing one or more affine array or indexed array references as a
candidate for prefetch instrumentation. When nested loops are encountered, we consider
prefetch instrumentation for the inner-most loop only. (Figure 18a shows an inner-most
loop which we will use as an illustrative example). For each selected loop, we copy the
loop header and place it in a separate prefetch procedure (Figure 18b, line 8). Inside the
copied loop, we insert prefetch statements for each affine array and indexed array reference
appearing in the original loop body (Figure 18b, lines 9-11).

Second, we insert code into the computation thread to initiate the prefetch thread
(Figure 18a, lines 1-4). Since this code is executed by the computation thread, its overhead
is not transparent. We use a recycled thread model [21] to reduce the cost of thread initiation.
Rather than create a new thread everytime prefetching is initiated, the prefetch thread is
created once during program startup, and enters a blocking dispatch loop (Figure 18c). To
initiate prefetching, the computation thread communicates a PC value through memory,
and executes a resume instruction to dispatch the prefetch thread (Figure 18a, lines 3-
4). After prefetching for the computation loop has been completed, the prefetch thread
returns to the dispatch loop, thus “recycling” it for the next dispatch. In addition to thread
initiation code, we also insert a kill instruction to terminate the prefetch thread in the
event it is still active when the computation thread leaves the loop (Figure 18a, line 10).

Third, we insert code to pass arguments. Any variable used by the prefetch thread that
is a local variable in the computation thread must be passed. Communication of arguments
is performed through loads and stores to a special argument buffer in memory (Figure 18a,
line 1 and Figure 18b, line 2). Although the computation thread’s argument passing code
is not executed transparently, we find this overhead is small since only a few arguments are
typically passed and the argument buffer normally remains in cache.

Finally, we insert code to synchronize the prefetch thread with the computation thread.
Because the prefetch thread executes only non-blocking memory references, it naturally
gets ahead of the computation thread. We use a pair of loop-trip counters to keep the
prefetch thread from getting too far ahead. One counter is updated by the computation
thread (Figure 18a, line 6), and another is updated by the prefetch thread (Figure 18b, line
12). Every iteration, the prefetch thread compares the two counters, and continues only
if they differ by less than the desired prefetch distance [15]; otherwise, the prefetch thread
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void LOOP1() {1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

/* Prologue */
for (i=0; i<PD; i++) {
 prefetch(&b[i]);
}

/* Main Loop */

prefetch(&b[i+PD]);
prefetch(&a[b[i]]);
prefetch(&z[i]);

do {

}
/* Epilogue Loop */
for (; i<=N; i++) {
prefetch(&a[b[i]]);
prefetch(&z[i]);

do {

}

(a) COMPUTATION THREAD

1 smt_global.param[0] = N;
2

resumeID = LOOP1;3
resumeContext(cxt_id);4
 for (i=0; i<=N; i++) {5

6
y = y + z[i];7
x = x + a[b[i]];8

}9
10 KILL(cxt_id);

1 void DISPATCHER() {
 while(1) {2
 suspendContext(cxt_id);
(resumeID)();

}

3
4
5
6 }

 int N = smt_global.param[0];

(c) DISPATCHER LOOP

(b) PREFETCH THREAD

for (i=0; i<=N−PD; i++) {

 consumer++;

producer++;

producer++;

producer = 0,  consumer  = 0;

} while (producer > consumer + PD);

 } while (producer > consumer + PD);

Figure 18: TSP instrumentation example. (a) Computation thread code. (b) Prefetch thread code.
(c) Dispatcher loop for implementing a recycled thread model.

busy-waits (Figure 18b, lines 13-14). While the prefetch thread may incur a significant
number of busy-wait instructions, these instructions execute transparently.

Note, for indexed array references, we insert prologue and epilogue loops to software
pipeline the index array and data array prefetches (Figure 18b, lines 3-6 and lines 16-23).
This technique, borrowed from conventional software prefetching for indexed arrays [15],
properly times the prefetch of serialized index array and data array references.

5.2 Performance Evaluation

In this section, we evaluate the performance of TSP, and compare it against two versions
of conventional software prefetching: one that naively instruments prefetching for all load
instructions, and one that uses detailed cache-miss profiles to instrument prefetching selec-
tively. For selective software prefetching, we use the predicate in Equation 1 to evaluate
prefetch profitability, and only instrument those static loads for which the predicate is true.

When evaluating the prefetch predicate from Equation 1, we assume an 8-cycle overhead
per dynamic load (see Section 5.1). The L1 and L2 miss rates needed to evaluate the
predicate are acquired by performing cache-miss profiling in each benchmark’s simulation
region given in Table 3, and we use the L2 hit time and memory latency values reported in
Table 1. Once candidate loads have been selected using Equation 1, we instrument software
prefetching by following the well-known algorithm in [15]. (We use the same algorithm to
instrument software prefetching naively for all load instructions as well). In this section,
instrumentation for both TSP and conventional software prefetching is performed by hand.
Later in Section 5.3, we discuss preliminary work to automate TSP in a compiler.

Figure 19 presents performance results for the different prefetching schemes, using 7 out
of the 8 benchmarks from Table 3 (we do not evaluate GZIP). In Figure 19, we report the
normalized execution time for no prefetching (NP), naive software prefetching applied to
all candidate loads (PF), selective software prefetching applied to loads meeting our predi-
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Figure 19: Normalized execution time for different prefetching schemes: no prefetching (NP),
naive conventional software prefetching (PF), selective conventional software prefetching
(PFS), Transparent Software Prefetching (TSP), and TSP without foreground thread
flushing (NF). The label appearing above each bar reports the number of instrumented
loops.

cate based on cache-miss profiles (PFS), and TSP applied to all candidate loads. Each bar
in the graph is broken down into three components: time spent executing useful instruc-
tions, time spent executing prefetch-related instructions, and time spent stalled on data
memory accesses, labeled “Busy,” “Overhead,” and “Memory,” respectively. All values are
normalized to the NP bars. Finally, a label appears above each bar reporting the number
of instrumented loops. These numbers show a significant reduction in loop coverage when
performing selective software prefetching.

Our results show TSP outperforms naive conventional software prefetching on every
benchmark. Across the 6 SPEC benchmarks, TSP provides a 9.41% performance boost
on average, whereas naive conventional software prefetching suffers a 1.38% performance
degradation, reducing performance in 4 out of the 6 SPEC benchmarks. This performance
discrepancy is due to a 19.6% overhead when using naive software prefetching compared to
a 1.32% overhead when using TSP. Despite the fact that prefetching is instrumented for all
candidate loads, TSP’s negligible overhead enables it to avoid degrading performance even
for overhead-sensitive benchmarks like GAP and EQUAKE where there is very little mem-
ory stall. Compared to naive software prefetching, selective software prefetching reduces
overhead down to 14.13% by using profile information, resulting in a 2.47% performance
gain averaged across the 6 SPEC benchmarks. However, TSP still outperforms selective
software prefetching on every benchmark. Even for benchmarks where conventional software
prefetching performs exceptionally well (e.g., Irreg), TSP still performs better.

The performance gains demonstrated by TSP in Figure 19 suggest that transparent
threads not only eliminate overhead, but they also provide enough resources for the prefetch
threads to make sufficient forward progress. To evaluate the contribution of our transparent
thread throughput mechanisms, the last set of bars in Figure 19, labeled “NF,” report the
normalized execution time of TSP without foreground thread flushing. The NF bars clearly
show the complete set of mechanisms is critical since the performance gains of TSP are
significantly reduced when foreground thread flushing is turned off.

5.3 Compiler Support

Sections 5.1 and 5.2 introduce TSP and evaluate its performance, showing good perfor-
mance compared to conventional software prefetching even when applied naively. Another
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important issue is whether TSP can be automated in a compiler to relieve the programmer
from the burden of manually generating code for the prefetch threads. Since conventional
software prefetching has already been automated previously [15], it is important to show
TSP can be similarly automated; otherwise, conventional software prefetching may still hold
an advantage over TSP even if TSP achieves better performance.

To demonstrate TSP can be automated, we developed a compiler algorithm for extract-
ing prefetch thread code via static analysis of an application’s source code. This algorithm
is presented in Appendix A. To show its feasibility, we prototyped the algorithm using
the Stanford University Intermediate Format (SUIF) framework [22]. At the time of this
paper’s writing, we completed our compiler prototype and successfully generated prefetch
thread code for two of our benchmarks, VPR and BZIP2, fully automatically. Furthermore,
when executed on our simulator, the automatically generated TSP code performs identically
compared to the manually generated code. Unfortunately, a complete study on automating
TSP is beyond the scope of this paper. However, we believe our preliminary experience
with compiler support suggests that automating TSP is feasible.

6. Related Work

SMT Processors [1, 23, 24] hold the state of multiple threads in hardware, allowing the
execution of instructions from multiple threads each cycle on a wide superscalar processor.
This organization has the potential to boost the throughput of the processor. The priority
that different threads receive in utilizing the processor resources is determined by resource
allocation policies.

Several researchers have studied hardware resource allocation mechanisms [2, 23, 25] and
operating system scheduling policies [26, 27] for SMT processors. In particular, Tullsen and
Brown [25] first proposed flushing to reclaim execution resources stalled on long latency
memory operations. Their work was the motivation behind several of our mechanisms.
Compared to these previous techniques, however, our work tries to improve single-thread
performance whereas the previous work focuses solely on processor throughput.

Raasch and Reinhardt [28] proposed fetch policies for SMT processors that consider
single-thread performance in addition to overall processor throughput. They assume a
single latency-critical foreground thread executes simultaneously with one or more low-
priority background threads, and evaluate fetch policies that favor the foreground thread
over the background thread(s). Luo et al [2] also discuss the notion of fairness in SMT
processors so that less efficient threads do not get starved of processor resources. Our
work focuses on mechanisms that permit background threads to share resources with the
foreground thread in a completely transparent fashion. Furthermore, we apply priority
mechanisms for slots and buffers along the entire pipeline, rather than just for the fetch
stage.

Software prefetching [17, 18, 15] is a promising technique to mitigate the memory
latency bottleneck. Traditional software prefetching techniques inline the prefetch code
along with the main computation code. We propose Transparent Software Prefetching, a
novel subordinate threading technique that executes prefetch code in transparent threads.
Chappell et al [3] and Dubois and Song [4] proposed subordinate threads as a means for
improving main thread performance. In [4], the authors demonstrate stride prefetching
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can be implemented in software using subordinate threads. Our TSP technique is similar,
but we use transparent threading mechanisms to eliminate the overhead of the subordinate
prefetch threads.

Subordinate threads have also been used to execute exception handlers [29], and to
pre-execute performance-degrading instructions [5, 6, 7, 8, 9, 10]. These latency tolerance
techniques use one or more helper threads running ahead of the main computation to trigger
long-latency memory operations early. They can also assist branch prediction by resolving
hard-to-predict branches early [10]. Our work could be used to minimize the overhead of
these techniques as well.

7. Conclusions

This paper investigates resource allocation mechanisms for SMT processors that preserve,
as much as possible, the single-thread performance of designated foreground threads, while
still allowing background or “transparent” threads to share resources. Our mechanisms
ensure transparent threads never take performance-critical resources away from the fore-
ground thread, yet aggressively allocate those resources to transparent threads that do not
contribute to foreground thread performance. The conclusions of our work can be enumer-
ated as follows.

Transparency mechanisms. Instruction buffer occupancy is an important parameter
that determines the impact of background threads on the foreground thread. In order
to guarantee at allocation time that buffer resources can be given to background threads
transparently, we would need future information as to how long a background thread’s in-
structions will occupy an instruction buffer. Since such information cannot be obtained in
a realistic machine, we use pre-emption to reclaim buffer entries from background threads
whenever they are needed by the foreground thread. On a suite of multiprogramming work-
loads, our results show transparent threads introduce a 3% foreground thread performance
degradation on average, and when contention on cache and branch predictor resources are
factored out, the performance degradation is less than 1% for all workloads.

Performance mechanisms. Foreground threads with long latency operations tend to
overwhelm the instruction buffer resources, thereby adversely impacting background thread
performance. This work shows the importance of aggressively allocating stagnant fore-
ground thread buffer resources to the background thread in order to boost its overall
throughput. Our results show that transparent threads run only 23% slower compared
to an equal priority scheme when using our foreground thread flushing mechanism.

Transparent Software Prefetching. To demonstrate the potential uses of transparent
threads, our work also proposes an implementation of software prefetching on transparent
threads, called Transparent Software Prefetching. TSP solves the classic problem of deter-
mining what to prefetch. Due to the near-zero overhead of transparent threads, TSP can
be applied naively, without ever worrying about the profitability of a transformation. In
our evaluation of Transparent Software Prefetching, our results show TSP achieves a 9.41%
performance gain across 6 SPEC benchmarks, whereas conventional software prefetching
degrades performance by 1.38%. Even when detailed cache-miss profiles are used to guide
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instrumentation selectively, conventional software prefetching only achieves a 2.47% perfor-
mance gain. The performance advantage of TSP comes from its 1.32% overhead, compared
to a 14.13% overhead for selective software prefetching.

Spare Execution Bandwidth. Based on our preliminary results, we conclude that appli-
cations running on wide out-of-order superscalar cores leave a significant number of unused
resources that can be allocated to non-critical computations in a completely non-intrusive
fashion. We believe our work has only begun to look at the potential uses for such “free”
execution bandwidth. In future work, we hope to further explore the applications of trans-
parent threads, including multiprogrammed workload scheduling, subordinate multithread-
ing optimization, and on-line performance monitoring, as eluded to at the beginning of this
paper.
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Appendix A. Compiler Algorithm for Instrumenting TSP

Figure 20 presents our algorithms for automatically generating prefetch thread code for TSP.
The first algorithm, Prefetch Thread() in Figure 20a, extracts the following information:
the set of loop induction variables used as array reference indices, LI, the set of loop exit
conditions, EC, the set of memory references for prefetching, LD, and the set of parameters
passed from the main thread to the prefetch thread, PR. The Prefetch Thread() algorithm
is applied to each inner-most loop in the application source code. Together, LI, EC, LD,
and PR are sufficient to generate the prefetch thread code. (The code generation steps are
not shown in Figure 20; in our SUIF compiler prototype, we use a Perl script to generate
prefetch thread code once LI, EC, LD, and PR have been extracted by SUIF).

The first step is to compute LI. A statement S is said to be a loop induction statement if
S both uses (USE(S)) and defines (KILL(S)) a variable, and the definition reaches the next
invocation of S in the following iteration (REACH(S)) without being overwritten by another
definition. Lines 3-9 compute LI accordingly. The second step is to compute EC to enable
proper termination of the prefetch thread. Specifically, the prefetch thread should evaluate
all conditional expressions from the main thread code that control loop termination, as well
as all statements affecting such loop termination conditions. To include all relevant code,
we perform backward slicing [30] on the conditional expressions using the Backslice()
algorithm (explained below). Lines 10-14 compute EC. The third step is to find the set of
memory references for prefetching, LD. We prefetch all affine array (of the form A[i]) or
indexed array (of the form A[B[i]]) references. Similar to computing exit conditions, we rely
on backward slicing to extract all relevant code for computing prefetch memory addresses.
Lines 15-21 compute LD.

While computing LI, EC, and LD, our algorithm in Figure 20a also determines the live-
in variables to the prefetch thread code. All local variables that are used before their first
define inside the prefetch loop should be passed to the prefetch thread as parameters. Each
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Given:
        Inner most loop, LP
Computes:
        Set of parameters for prefetch thread, PR
        Set of loop induction statements, LI
        Set of loop exit conditions, EC
        Set of prefetchable loads, LD

Prefetch_Thread(LP) {
    PR = LI = EC = LD =Φ
    do {
        if (S in KILL(S) && S in REACH(S) && S in USE(S)) {
            <_param, _dummy, _dummy> = Backslice(S, S, LP, LI,Φ)
            PR = PR U _param
            LI = LI U S
        }
    } ∀  variable defining statements S in LP
    do {
        <_param, _slice, _dummy> = Backslice(S, S, LP, LI,Φ)
        PR = PR U _param
        EC = EC U <S, _slice>
    } ∀ loop exit conditions S in LP
    do {
        <_param, _slice, _index> = Backslice(S, S, LP, LI, LD)
        if (_index!= Φ && backslice not aborted)
            PR = PR U _param
            LD = LD U <S, _slice, _index>
        }
    } ∀  memory references S in LP
    do {
        if (S accesses the same cache block as one in LD)
            LD = LD - S
    } ∀  memory references S in LD {
    return <PR, LI, EC, LD>
}

Given:
        Memory reference statement, SM
        Current statement being inspected for backward slice, SC
        Target loop, LP
        Set of loop induction statements, LI
        Set of prefetchable loads, LD
Computes:
        Parameter list, PR
        Backward slices for SM’s address calculation, SL
        Index of SM, IX

Backslice(SM, SC, LP, LI, LD) {
    PR = SL = IX =Φ
    do {
        _param = _slice = _index =Φ
        R = {D | D in REACH(SC) and D defines V}
        if (|R| > 1)
            abort backslicing
        else if (R  == SM)
            abort backslicing
        else if (R ==Φ)
            _param = V
        else if (R in LI)
            _index = R
        else if (R in LD)
            _index = R
        else
            <_param, _slice, _index> = Backslice(SM, R, LP, LI, LD)
        PR = PR U _param
        SL = SL U R U _slice
        IX = IX U _index
    } ∀  input variables V in SC
    return <PR, SL, IX>
}

(a)
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Figure 20: Algorithm for generating prefetch thread code automatically. (a)
Prefetch Thread() computes all information necessary to generate prefetch
thread code. (b) Backslice() performs backward slicing to extract code state-
ments for computing exit conditions and prefetch memory addresses.

live-in is identified during backward slicing analysis, and is then collected into the set of
parameters, PR, at lines 6, 12, and 18. Finally, locality analysis is performed in lines 22-25
to prevent multiple memory accesses to the same cache block, thus avoiding redundant
prefetches.

The second algorithm, Backslice() in Figure 20b, computes information needed by
the Prefetch Thread() algorithm. First, Backslice() computes the backward slice, SL,
which is the chain of dependent statements leading up to a specified statement, SM. Back-
ward slicing, as mentioned earlier, extracts the relevant code for exit conditions and prefetch
memory addresses. In addition, Backslice() also computes the set of index variable state-
ments, IX, in each backward slice associated with prefetchable load instructions. Finally,
Backslice() also identifies all live-in variables, PR, in each backward slice.

Backslice() recursively traverses the control flow graph of a loop, LP, starting from
SM, and identifies all reaching definitions for the input variables at statement SC (the
current point of analysis). Termination of recursion can occur in one of three ways. First,
when no statement in the loop defines an input variable V at statement SC, the variable
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is loop invariant (lines 37-38). Such loop-invariant variables are added to the parameter
set, PR, signifying their values must be passed into the prefetch thread code as parameters.
Second, if the reaching definition is itself a loop induction statement (i.e., it is a member
of set LI) and SM is a memory reference (which occurs when Backslice() is called from
line 16), then SM contains an affine array reference (lines 39-40). Third, if the reaching
definition involves an affine array or indexed array reference (i.e., it is a member of set LD)
and SM is a memory reference, then SM contains an indexed array reference (lines 41-42).
For both affine and indexed array references, we include the reaching definition in the set of
index variable statements, IX, so that the index can be identified for each array reference
(this information is used in line 19). If SM is a memory reference but recursion does not
terminate at lines 39-42, then SM is loop invariant and thus accesses a scalar variable. In
this case, we will return a null index set, signifying that this memory reference should not
be prefetched (line 17).

In addition to the three conditions described above that terminate recursion, there are
two error conditions that can cause the entire slicing analysis to abort. Our algorithm does
not prefetch a load whose address is computed along multiple paths. Hence, Backslice()
aborts when it detects a variable has multiple reaching definitions (lines 33-34). In addition,
our algorithm does not prefetch pointer-chasing loads. This restriction causes Backslice()
to abort when a variable is defined as a function of itself (lines 35-36). If none of the
terminating or aborting conditions apply, then our algorithm recurses to continue slicing
(lines 43-44).
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