Journal of Instruction Level Parallelism 5 (2003) 1-22 Submitted 10/02; Accepted 04/03

Eliminating Exception Constraints of Java Programsfor 1A-64

Kazuaki | shizaki ISHIZAKI@TRL.IBM.COM
Tatsushi Inagaki E29253@JP.IBM.COM
Hideaki Komatsu KOMATSU@ JP.IBM.COM
Toshio Nakatani NAKATANI@ JP.IBM.COM

IBM Research, Tokyo Research Laboratory
1623-14, Shimotsuruma, Yamato-shi, Kanagawa-ken, 242-8502, Japan

Abstract

Java exception checks are designed to ensure that any faulting instruction causing a hardware
exception does not terminate the program abnormally. These checks, however, impose some con-
straints upon the execution order between an instruction potentially raising a Java exception and a
faulting instruction causing a hardware exception. This reduces the effectiveness of instruction re-
ordering optimizations for Java programs. Although some effective techniques have been pro-
posed to eliminate exception checks, many exception checks still remain. We propose a new
framework to perform speculation effectively for Java programs using a direct acyclic graph rep-
resentation (DAG) based on the SSA form. Using this framework, we apply a well-known specu-
lation technique to a faulting load instruction to eliminate such constraints. We use edges to repre-
sent exception constraints. This allows us to estimate the potential reduction of the critical path
length accurately for applying speculation. The new framework also allows us to avoid extra copy
instructions and to generate efficient code with minimum register pressure. We have implemented
it in the IBM Java Just-In-Time compiler, and observed performance improvements of 30% for
one of the micro-benchmark programs, up to 13% (with an average of 1.7%) for the Java Grande
Benchmark Suite, and up to 12% (with an average of 1.2%) for SPECjvm98 on an Itanium proces-
sor. Our speculation technique was particularly effective for those programs that access multi-
dimensional arrays.

1 Introduction

The type safety feature of Java calls for the bytecode to make alarge number of runtime excep-
tion checks in order to eliminate error-prone situations. These runtime checks ensure a Java pro-
gram cannot execute unsafe operations that may cause the program to be terminated abnormally.
Exceptions in Java programs can be categorized into two types. hardware exceptions and Java
exceptions. Hardware exceptions are thrown by the hardware as the result of program execution
such as segmentation faults and invalid operations. Java exceptions are those software exceptions
that Java bytecode may throw such as NullPointerException and IndexOutOfBoundsExcep-
tion. An instruction that may throw an exception is called a potentially excepting instruction
(PEI) [1]. Furthermore, we call the instruction a hardware-initiated potentially excepting instruc-
tion (H-PEI) if it can cause a hardware exception. In contrast, we call the instruction a software-
initiated potentially excepting instruction (S-PEI) if it may throw a Java exception as the result of
its execution. A Java exception is always recoverable in the sense that it can be caught by a catch
clause in the Java program. Such an exception must be thrown before any hardware exception
occurs. A load ingtruction that may cause a hardware exception by reading an invalid effective
address or a TLB miss, a faulting load instruction [2] (one of the H-PEIs), cannot be scheduled

©2003 Al Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

ISHIZAKI, INAGAKI, KOMATSU, & NAKATANI

across an S-PEI. This limitation prevents instruction reordering optimizations from being applied
in awider region.

This paper focuses on how we can allow instruction reordering optimizations in Java programs
on the IA-64 [3]. In the past, some effective techniques have been proposed to eliminate S-PEIs
[4, 5, 6], but many S-PEIs still remain. Therefore, we propose a new framework to eiminate the
constraints between S-PEIs and H-PEIs by using specul ative code motion. This allows a compiler
to schedule H-PEls before dependent S-PEIls. Our approach depends upon special hardware fea-
tures of the |A-64 to support speculative code maotion. Here, speculative execution refers to exe-
cuting an ingtruction before execution is required. Two speculative execution techniques have
been proposed. One is called control speculation [1, 2,7, 8,9, 10, 11], which is a technique to
dleviate the control dependence between a branch and the following instructions by estimating
the branch direction. Control speculation allows the compiler to aggressively schedule instruc-
tions across a branch. The other is called data speculation [12, 8, 10, 11], which is a technique to
alleviate the data dependence between a store instruction and the following load instructions by
determining when the load will access a different memory location from the store. Data specul a-
tion alows the compiler to aggressively schedule instructions across a store. We propose excep-
tion speculation as a third speculation technique to alleviate the exception dependence between
the S-PEI and the following H-PEls by determining that an exception does not occur when mov-
ing the H-PEI across the S-PEI. Exception speculation allows the compiler to aggressively sched-
ule instructions across an S-PEI.

Our approach uses a directed acyclic graph (DAG) representation based on the static single as-
signment (SSA) form [13]. A DAG consists of nodes that represent instructions in a program and
edges that represent dependencies among instructions. We use an edge in the DAG to represent
an exception dependence relationship between each S-PEI and each of its succeeding H-PEIs [14].
We call this an exception dependence edge. Every exception dependence edge can also be in-
cluded in the critical path length to estimate the gain when the target instruction is scheduled ear-
lier across the S-PEI. After the decision is made to apply exception speculation, the faulting load
instruction is replaced with the non-faulting load instruction to prevent it from throwing a hard-
ware exception when it is scheduled earlier across the S-PEI.

Supporting exception speculation in an intermediate representation (IR) to distinguish excep-
tion speculation from control speculation yields the following two advantages:

1. Unlike the approach of Arnold et al. [15], which converts an S-PEI to a pair of compare and
branch instructions and thus increases the number of control dependence edges for subse-
quent instructions, our approach needs only one exception dependence edge between an S
PEI and an H-PEI. This reduces the size of the IR as well as the number of edges to be trav-
ersed for determining speculation and performing instruction scheduling. The compilation
time can be reduced since the compiler avoids globa optimizations such as percolation
scheduling.

2. Unlike general percolation, by introducing exception speculation we can easily estimate the
benefit of exception speculation aong an exception dependence edge.

We also address two compilation issues for exception speculation: how to select a sequence of
instructions, called a speculative chain [10], to move across an S-PEI, and how to generate the
recovery code. We propose a selection mechanism for a speculative chain that does not require
inserting any additional copy instructions. We aso propose code generation techniques to mini-
mize the register pressure in the origina code by saving registers killed in the recovery code, and
to minimize the impact on the code scheduling (bundle formation) phase by duplicating instruc-
tions in the recovery code.

Eliminating Exception Constraints of Java Programsin |A-64

We implemented these approaches for eliminating exception checks and exception constraints
using the IBM Java Just-In-Time (JIT) compiler [4] for the |A-64. We conducted experiments by
running micro-benchmarks, and two industry standard benchmark suites, the Java Grande
Benchmark Suite and SPECjvm98. Our preliminary results show that exception speculation im-
proves the performance, by 30% for one of the micro-benchmark programs, up to 13% (with an
average of 1.7%) for the Java Grande Benchmark Suite, and up to 12% (with an average of 1.2%)
for SPECjvm98, with only a modest code size growth on an Itanium processor that is an imple-
mentation of the 1A-64 architecture. In a few cases in the Java Grande Benchmark Suite and
SPECjvm98, we observed a small performance degradation. We believe that this is due to the
execution of recovery code when exception speculation fails because of TLB misses at runtime.
In addition, we also observed that exception check eliminations using forward dataflow analysis
[5], backward dataflow analysis [6], and loop versioning [4] are also effective with exception
speculation. In some cases, our results show that exception speculation increases the performance
even after exception check eliminations have been applied. The experiments show that our specu-
lation technique is particularly effective for those programs that access multi-dimensional arrays
frequently when those exception elimination techniques cannot reduce the number of exception
checks. Thus, exception speculation is complementarily effective even when known exception
elimination techniques are applied. We also observed that our framework saves space for the
DAG-based IR.

This paper makes the following contributions:

® A new framework to handle exception speculation using the SSA-based DAG representa-

tion.

® An efficient method to select speculative chains and generate the corresponding recovery

code.

® Experimental results to validate the effectiveness of eliminating exception checks and ex-

ception constraints in Java programs using IBM’s Java JIT compiler for the |A-64.

The rest of the paper is structured as follows. Section 2 discusses the related work. Section 3
gives a system overview. Section 4 describes the technique to eliminate the exception constraints
between S-PEIs and H-PEIls using exception speculation. Section 5 describes compilation issues
for speculation and their solutions. Section 6 gives our experimental results. Finally, section 7
presents our conclusions.

2 Rdated Work

We categorize approaches for eliminating exception constraints into two categories. One is
speculation to move H-PEIs over S-PEIs. The other is elimination of S-PEIs using compiler opti-
mization techniques. Section 2.1 describes related works regarding to the elimination of S-PEI.
Section 2.2 describes related work regarding the elimination of S-PEIs.

2.1 Speculation of H-PEI

Ebcioglu and Altman [16] proposed an out-of-order translation technique. It assumed architec-
tural support for non-faulting load instructions. Since it renames a target register when the origi-
nal load ingtruction is speculatively replaced with a non-faulting load instruction, an extra copy
instruction must be inserted to recover the value in the original register at the original position of
the corresponding load instruction. These extra copies increase the critical path length. In contrast,
since our technique estimates the critical path length using DAG representation, the critical path
length is not increased.

ISHIZAKI, INAGAKI, KOMATSU, & NAKATANI

Le [2] aso described a runtime binary tranglation technique that moves instructions specula-
tively without any special architectural support. When an exception is raised by a speculated in-
struction, it is caught by the OS and the OS goes back to a generated checkpoint in the normal
code. Thus, the trandator requires the generation of some checkpoint code, which increases the
critical path length even when no exception occurs. Its advantage isin not requiring any hardware
support such as non-faulting instruction. In contrast to this approach, our speculation technique
does not increase the critical path length.

Ju et a. [10] described a unified framework for control and data speculation on the 1A-64.
Their framework uses an SSA-based DAG to move instructions speculatively. It is similar to ours,
in the sense that a DAG is used and extra copy instructions are avoided. Their target language is
C, and thus they do not deal with runtime exception speculation for a type-safe language. Their
experiments were limited to an |A-64 architecture simulator.

Arnold et al. [15] described the impact of Java exceptions on aVLIW architecture based on su-
perblock scheduling and a general percolation technique, and assumed architectural support for
non-faulting load instructions. Their technique converts an S-PEI to a pair of compare and branch
instructions. Instructions are then moved speculatively by superblock scheduling and a general
percolation technique. The advantage is in applying general instruction scheduling techniques.
The disadvantage is in increasing the number of control dependence edges for subsequent instruc-
tions by converting the S-PEI. Again, their experiments were limited to a smulator.

2.2 Elimination of S-PEI

Whaley [5] described forward dataflow analysis to eliminate S-PEI. This technique eliminates
redundant S-PEls for validated values in a control flow graph. Since this technique eliminates
only redundant S-PEIls going forward, many S-PEls remain after applying this technique. Thus,
our specul ation technique offers additional improvements.

Kawahito et d. [6] described an agorithm using backward dataflow analyses such as partia
redundancy elimination [17] to move S-PEls backward in a control flow graph to the earliest
points they can reach. Since this technique moves redundant S-PEIs to an infrequently executed
path such as a location outside of aloop, it is quite effective. However, since several S-PEIs re-
main after applying this technique, our speculation technique is still effective.

Suganuma et al. [4] described loop versioning that elevates an individua array index exception
check outside aloop by creating a safe loop and an unsafe (original) loop. The code for exception
checks is generated at the entry of the loop by examining the whole range of the index within the
loop. Therefore, all the array bound checks against the first dimension of the array are eliminated
in the safe loop. This technique doubles the code size. It also fails to eliminate S-PEIs for two or
more dimensional arrays. Our speculation technique is effective even when applying loop ver-
sioning.

Manish et a. [18] described some compiler optimizations to reorder different S-PEIS or reorder
an S-PEI with respect to an instruction affected by precise exception semantics using software
solutions. Their technique first finds the visible state in a method, and then relaxes exception con-
straints between S-PEIs that do not change the visible state. It has an advantage that no hardware
support is required. However, it cannot move an H-PEI over an S-PEI speculatively. We propose
a complementary technique to reorder S-PEls and H-PEIs with appropriate architectural support.

3 System Overview

This section provides an overview of the I1A-64 architecture and our compiler. Section 3.1 de-

Eliminating Exception Constraints of Java Programsin |A-64

scribes the important architectural features which the compiler relies on. Section 3.2 describes the
optimization framework for our compiler.

3.1 Architectural Featuresof | A-64

In this paper, we assume the following three architectural features to effectively support specu-
lation using recovery blocks[9]:

Feature 1:A non-faulting load instruction that defers the exception and sets deferred hits to
destination registers if the instruction causes hardware exceptions. When any instruction reads
source registers with the deferred bits, it does not cause a hardware exception but does propagate
the deferred bits.

Feature 2: A low-overhead instruction that checks whether the deferred bits are set in aregister
and if so, then executes recovery code.

Feature 3:Many registersto hold the values the recovery code can use.

These features could also be implemented in software using the support of an operating system.
However, the I1A-64 architecture [3] supports the above features in hardware. For Feature 1, the
|A-64 architecture provides non-faulting load instructions such as 1d.s instructions in the in-
struction set architecture. A Not a Thing (NaT) bit of the destination register is set if an 1d.s
instruction reads an invalid address or causes a TLB miss. When the NaT bits of one or more
source registers are set, the referring instruction propagates only the NaT bits to the destination
register. For Feature 2, the IA-64 architecture provides a check instruction (we refer to it as
chk. s) to quickly see whether a hardware exception has been deferred. If no exception has been
deferred, the instruction takes no cycles. If an exception has been deferred, the execution
branches to recovery code. For Feature 3, the IA-64 provides 128 general purpose registers and
128 floating point registers. Therefore, registers are rarely spilled even if their liveness is ex-
tended by recovery code.

3.2 Optimization Framework

In Figure 1, we show an overview of our Java JIT compiler. First, the compiler builds a DAG
in the SSA form after it trandates the bytecode to our IR. The DAG consists of nodes that repre-
sent instructions in a program and edges that represent dependencies among instructions.

Second, it performs exception elimination optimizations such as loop versioning and nullcheck
elimination to remove redundant runtime exception checks. The nullcheck elimination algorithm
using forward dataflow analysis [5] and backward dataflow analysis [6] removes most of the
nullchecks for references to instance variables. Loop versioning [4] removes most of the bound-
checks for the first dimension of arrays. All of these are software approaches eliminate exception
checks as described in Section 2. Although these optimizations are effective, the exception checks
against the higher dimensions of arrays cannot be eliminated and many exception checks have
already been eliminated during this phase. Figure 2 shows an example of eliminating exception
checks. Figure 2 a) is the origina code. Figure 2 b) represents a code block with explicit excep-
tion checks such as nul check and boundcheck. Nullcheck elimination using forward data-
flow analysis eliminates a nullcheck for the instance variable X in the loop. The result is shown in
Figure 2 c). Then, scalar replacement for the variable x . a and nullcheck elimination using back-
ward dataflow anaysis can move the nullcheck for x.a out of the loop. The result is shown in
Figure 2 d). Finaly, loop versioning eliminates the boundcheck for €[1] by creating a safe loop.

ISHIZAKI, INAGAKI, KOMATSU, & NAKATANI

However, exception checks for the array a_2 cannot be eliminated. The result is shown in Figure
2¢6).

bytecode—p»| Translate —p{Build DAG P Exception elimination —p»{Exception constraint
bytecode to IR optimizations eliminations

native «¢—{Recovery code |[¢— Code ¢— Register ¢— Translating [¢— DAG

code generation generation allocation out of SSA scheduling

1§ 1§

|Bund|e formation |
Figure 1. An overview of the JIT compiler

for (int i =0; i <x.n; j++) {
int a_2[]1 = x.a[i];
J += a 2[0];

a) An original code

nullcheck x; nullcheck x; nullcheck x;
for (int 1 =0; i < x.n; i++) { for (int 1 =0; i < x.n; i++) { t = x.a;
nullcheck x; nullcheck x.a; nullcheck t;
nullcheck x.a; boundcheck x.a[i]; for (int 1 = 0; 1 < x.n; i++) {
boundcheck x.a[i]; int a_2[] = x.a[i]; boundcheck t[i];
int a_2[]1 = x.a[i]; nullcheck a_2; int a_2[] = t[i];
nullcheck a_2; boundcheck a_2[0]; nullcheck a_2;
boundcheck a_2[0]; j += a_2[0]; boundcheck a_2[0];
J += a 2[0]; } J +=a 2[0];
} }
b) A code with explicit c¢) After elimination using d) After elimination using
exception checks forward dataflow backward dataflow with

scalar replacement

nullcheck x;
t = x.a;
nullcheck t;
if ((0 <= x.n) && (x.n <= x.a.length)) {
// safe loop
for (int 1 = 0; 1 < x.n; i++) {
int a_2[] = t[i];
nullcheck a_2;
boundcheck a_2[0];
J +=a 2[0];

T
} else {

for (int 1 =0; 1 < x.n; i++) {
boundcheck t[i];
int a_2[] = t[i];
nullcheck a_2;
boundcheck a_2[0];
J +=a 2[0];

ks

¥
e) After loop versioning
Figure 2: An example of eliminating exception checks

Third, it eliminates the exception constraints against the remaining exception checks, as de-
scribed in Section 4, and it performs DAG scheduling based on list scheduling [19]. In Figure 2 €),
the elimination of the exception constraints enables the scheduling of a load instruction for the
element a_2[0] before the nullcheck and boundcheck in a safe loop. After it translates out of
the SSA form, it allocates physical registers and generates the native code. The code generation
works with the bundle formation, which identifies groups of instructions that should be executed
simultaneoudy. Since VLIW machines such as the |A-64 processor issue severa instructions si-

Eliminating Exception Constraints of Java Programsin |A-64

multaneoudly, bundle formation is important to extract instruction parallelism from programs. In
the code generation phase, the S-PEI is converted to a pair of native compare and branch instruc-
tions. Finaly, it generates recovery code, as described in Section 5, corresponding to each specu-
lative chain.

4 Exception Speculation

In this section, we present a technigue to eliminate an exception constraint between an S-PEI
and an H-PEI by using speculation to reduce the critical path length. After eliminating the con-
straint and replacing the H-PEI with a non-faulting instruction, the non-faulting instruction and
the succeeding instructions can be executed earlier than the S-PEI. We call this exception specu-
lation.

a) Sample program b) IR and DAG c) IR and DAG d) IR after DAG scheduling
before exception speculation after exception speculation

int foo(int a[], int i) { N1: nullcheck a N1: nullcheck a N1: nullcheck a

return a[i] + 1; N2: Id vl = [a] // len N2: Id vl = [a] // len N2: Id vl = [a] // len

} N3: add v2 = a, 16 N3: add v2 = a, 16 N3: add v2 = a, 16
N4: shadd v3 = t2, i<<2 N4: shadd v3 = t2, i<<2 N4: shadd v3 = t2, i<<2
N5: boundcheck i, vl N5: boundcheck i, vli N6: Id v4 = [v3] /7 a[i]
N6: Id va = [v3] // a[i] N6: Id va = [v3] // a[i] N5: boundcheck i, vi
N7: add V5 =v4, 1 N7: add V5 =v4, 1 N9: chk.s v4, Recovery, v3, v4
N8: ret V5 N9: chk.s v4, Recovery, v3, v4 N7: add V5 =v4, 1

N8: ret V5 N8: ret V5

An argument

O Anormal instruction

/ } A S-PEI
\ ;

A H-PEI

An instruction on
a speculative chain

» A data dependence edge

» An exception dependence edge

=P A virtual data dependence
1

Bold lines show the critical path

Example 1. An example of eliminating an exception constraint between H-PEIs and S-PEls

Example 1 shows an example of our technique. It shows an IR and a DAG. The DAG consists
of nodes that represent instructions in a program and edges that represent dependencies among
instructions. Each edge is weighted with the latency between instructions. Here, we assume that
each Id instruction (N2 and N6) and each Id.s instruction (N6) in Example 1 c) and d) take
three cycles and al other instructions take one cycle each, except for the chk instruction (N9). A
chk instruction takes O cycles. Unlike the system of Arnold et al. [15], our DAG representation
does not generate a pair of compare and jump instructions corresponding to an S-PEI. Instead, we
represent an S-PEI as a single instruction and add an exception dependence edge. An exception
dependence edge has zero latency since S-PEI and H-PEI can be executed in parallel due to the

ISHIZAKI, INAGAKI, KOMATSU, & NAKATANI

high ILP of the IA-64. The exception dependence edge allows the compiler to accurately estimate
the potentia change in the critical path length. Exception speculation can eliminate al the excep-
tion dependence edges between S-PEIs and H-PEIs. Exception speculation consists of the follow-
ing five steps:

Step 1: Decide whether aload instruction can be moved speculatively.

Step 2: Reconnect incoming exception dependence edges from a load instruction to a

chk instruction.

Step 3: Select asequence of ingtructions as a speculative chain.

Step 4: Build edges for the live-in and live-out sets of the recovery code.

Step 5: Build edges among the selected instructions and the chk instructions.
We give detailed explanations for each step of applying exception speculation below.

Step 1: The compiler compares the two earliest times to initiate the execution of the load in-
struction. One time is constrained by a data dependence, and the other is constrained by an excep-
tion dependence. If the longest time is set only by the exception dependence, the compiler will
move the load instruction speculatively by replacing the faulting load instruction with a non-
faulting one. This constraint can avoid unnecessary speculation that degrades performance by
executing recovery code due to TLB misses.

In the case of N2 of Example 1, the time set for the data dependence edge is zero, and the time
set for the exception dependence is zero. Therefore, N2 is not selected as a candidate for specula-
tion. Thisis because the critical path length would not be reduced even if the compiler eliminated
an exception dependence edge from N2. In the case of N6, the time set for the data dependence
edge is two and the time set for the exception dependence edge is three. Therefore, N6 is selected
as acandidate for speculation, and N6 is replaced with a non-faulting load instruction.

Step 2: A chk instruction is inserted at the original position of the corresponding load. Then,
the exception dependence edges from the S-PEls to the 1d ingtruction are diminated. If there is
an edge constrained by the access order from a write instruction to a read instruction, it will not
be eliminated. Data speculation can eliminate the access order edge, but this is beyond the scope
of this paper. The exception edges eliminated from the S-PEls are connected to a chk instruction.
This safeguards the execution order of the origina program by executing the recovery code after
executing the S-PEls. The recovery code is generated by the compiler to recover the correct pro-
gram state if the speculative load instruction defers any exception associated with the instruction.

In Example 1, a chk instruction (N9) is inserted into the DAG. The edge from N5 to N6 is
eliminated in Example 1 b), and then an edge is added from N5 to N9 in Example 1 c).

Step 3: We define a speculative chain as an instruction sequence that is constructed by those
data dependence chains, preceded by the speculative load instruction, which do not include any
instructions with a side effect such as a store instruction on the |A-64 architecture. The compiler
selects instructions by excluding any instruction that causes a side effect while it is traversing the
instructions that depend on the result of the load instruction through the true dependence chains.

Furthermore, the compiler takes keep track of the earliest time to initiate the execution of each
instruction in a speculative chain. If the earliest time to initiate the execution of an instruction in
the speculative chain is later than the time set for the exception dependence as calculated in Step
1, the compiler excludes the instruction from the speculative chain. This avoids utilizing exces-
sive resources by unnecessary instruction hoisting. Then the compiler marks the selected instruc-
tions as a specul ative chain. We discuss the selection process in more details in Section 5.1.

In the case of N6 of Example 1, since the earliest time to initiate the execution isthree, it is ear-
lier than the time set for the exception dependence. In the case of N7, since the earliest time to

Eliminating Exception Constraints of Java Programsin |A-64

initiate the execution is five, it is later than the time set for the exception dependence. Therefore,
only N6 is selected as a specul ative chain.

Step 4: If the recovery code were represented explicitly in the DAG, a phi (®) instruction
would be inserted after the chk instruction. The phi instruction may cause problems for other
optimizations including register allocation. Therefore, our representation marks the instructions
on a speculative chain, and then the compiler generates the recovery code from the marked in-
structions in the last phase. The compiler has to add the live-in and live-out sets of the recovery
code as operands for the chk instruction. Algorithm 1 shows the algorithm to determine the live-
inset 1'i and live-out set 1o from the corresponding speculative chain. In Example 1, the com-
piler adds operands v3 and v4 to N9 as live-in and live-out sets, respectively.

Procedure determine_liveinout(sc, scoth, li, lo)

sc: in set of statements in the speculative chain
scoth: 1in set of statements in other speculative chains
li: out set of src operands for live-in set

lo: out set of dst operands for live-out set
begin

st : a statement

o, s, p : an operand

Ii =1o=¢

for (st c statements(sc)) {
for (o c dst operands(st))
s = Sucessive use(0)

iT ((s n src operands(sc) # ¢) || /7 destination is used out of the chain
(s n src operands(scoth) = ¢)) // destination is used in other chain
lo U= o

for (o < src operands(st)) {
p = Previous def(o)
if (p n dst operands(sc) == ¢) i U= o0

end
Algorithm 1. Determination of the live-in and live-out sets

Step 5: Instructions on a speculative chain have to have edges to a chk instruction so that all
speculated ingtructions precede the chk ingtruction. The chk instruction has to have edges to al
the instructions that use the live-out set to schedule the chk instruction before those instructions.
These edges insure the correct execution when a deferred exception occurs and the recovery code
recalculates the live-out set.

In Example 1, a data dependence edge from N4 to N9 is added to the live-in set of that block of
recovery code. A data dependence edge from N6 to N9 is added in order to check whether an ex-
ception has been deferred. Then, avirtua data dependence edge from N9 to N7 is added since N7
is a consumer of the data generated in the recovery code corresponding to N9. Although the vir-
tual data dependence edge preserves the correct order between N9 and N8, it is not handled as a
data dependence edge. If it were handled as a data dependence edge, a new phi instruction would
be produced and the instruction could decrease the efficiency of some optimizations.

After exception speculation, the compiler performs DAG scheduling. As a result, N6 can be
scheduled before N5. Since the chk . s instruction for N9 takes O cycles on the | A-64 architecture
iIf no exception has been deferred, exception speculation reduces the critical path length (in bold)
from 7 to 6. Since the example is simplified for the sake of explanation, the reduction is small. In
general, for an access to an array element, two load instructions for the array length and the array
element can be moved speculatively across S-PEIs such as NullPointerException and IndexOu-
tOfBoundsException checks. Therefore, the reduction in the critical path length will be more
significant.

ISHIZAKI, INAGAKI, KOMATSU, & NAKATANI

5 Compilation I'ssuesfor Speculation

In this section, we address two compilation issues using speculation. One is how to select a se-
guence of instructions as a speculative chain to avoid extra copy instructions during the tranda-
tion out of SSA form [13, 20]. The other is how to generate the recovery code to minimize the
live-in register set needed by the recovery code and the impact on bundle formation.

5.1 Select a Speculative Chain

Here, we describe a method to select a sequence of instructions as a speculative chain. The
method is guaranteed not to insert extra copy instructions during the phase of trandating out of
the SSA form. If extra copy instructions are inserted, they might cancel out the advantages of
speculation, since each such copy would require an additional hardware execution unit. For ex-
ample, a move instruction between floating-point registers takes 5 cycles on the Itanium proces-
sor [21]. Therefore, this selection method is important.

We propose a method to generate the longest possible speculative chain, while avoiding the
generation of extra instructions, preventing cyclic graphs, and excluding instructions with side
effects such as store instructions on the 1A-64 architecture. We assert four conditions to generate
the correct recovery code, along with two additional conditions to prevent the insertion of extra
copy instructions. One of the conditions was already proposed by Ju et a. [10]. If al of the condi-
tions are satisfied while traversing the instructions depending on the results of the load instruc-
tions or preceding from the source of the load instructions through the true dependence edges, the
compiler can add instructions to the speculative chain. There are four conditions as follows:

Condition 1: Do not choose any instruction that would result in a cyclic graph.
Condition 2: Do not select any instruction that causes a side effect in a specul ative chain.
Condition 3: Do not choose any instruction that overrides another version of the same
variable involved in aphi congruence class.
Condition 4: Avoid interference between the destination registers of speculative instruc-
tions.
We give detailed explanations for each condition below.

Condition 1: Do not choose any instruction that would result in acyclic graph: If the graph be-
comes cyclic, it would preclude list scheduling. Since the IR of a Java program has many excep-
tion dependence edges, the compiler must ensure this condition when selecting any sequence of
instructions as a speculative chain. Example 2 shows an example of generating a cyclic graph by
speculation. We could apply speculation to N2 and select N2 and N4 as a speculative chain. A
node N6 is created for a chk instruction. An exception edge from N1 to N2 is eliminated, and an
exception edge from N1 to N6 is added to retain the original exception semantics. A data depend-
ence edge from N3 to N6 is added since the recovery code refers to a variable defined in N3, and
a data dependence edge from N6 to N3 is added since a variable defined in the recovery code is
referred to in N3. At that point, nodes N3 and N6 form a cyclic path, so N6 is excluded from the
speculative chain consisting of N3 and N4.

10

Eliminating Exception Constraints of Java Programsin |A-64

Q Anormal instruction

\
/ \ -

Apply speculation / i A S-PEI

to N2 and select i -

N4 as a speculation |

chain. A H-PEI

An instruction on
a speculative chain

» A data dependence edge

chk » An exception dependence edge

instructi‘“on'
» Anorder dependence edge

Example 2. An example of making a cyclic path by speculation

Condition 2: Do not select any instruction that causes a side effect in a speculative chain: A
NaT bit in the registers of a speculative chain is propagated if a speculative load instruction defers
an exception. Except for store instructions, no instructions will raise a hardware exception even
when aNaT bit is encountered in their source operands. Thus, store instructions must be excluded
from the speculative chains.

Condition 3: Do not choose any instruction that overrides another version of the same variable
involved in a phi congruence class: A phi congruence class is defined as a maximal union of true
dependence chains that consist of the following two types of links [20]. One type of link is one
from the definition operand in a phi or non-phi instruction to the use operand in another phi in-
struction. The other type of the link is one from the definition operand in a phi or non-phi instruc-
tion to the use operand of another non-phi instruction, but this use operand of the non-phi instruc-
tion terminates a phi congruence class. A phi congruence class must include one or more phi in-
structions. Any variable that consists of a phi congruence class will be assigned to the same name
during the translation out of the SSA form.

If the compiler selects an instruction that extends the lifetime of another version of that variable,
which will be part of the live-in set of a recovery code block, up to a chk instruction included in
a phi congruence class, then the live ranges of the two versions for the variable interfere with
each other at the chk ingtruction. An extra copy ingtruction is needed to avoid the interference
between multiple versions of the variable during trandation out of SSA form. Therefore, the
compiler should not select any instruction that causes this interference. To simplify the explana-
tion in Example 3, we do not speculatively move any instructions across S-PEISs.

Before speculation on a SSA form After speculation on a SSA form After translating out of SSA
Sl: add wl = vi, 1 S1: add wl = vi, 1 Sl: addw=v, 1
S2: if (wl == 0) goto S7 S2: if (w1l == 0) goto S7 S2: if (w == 0) goto S7
S3: Id y1 = [z0] S3: Id.s y1 = [z0] S3: Id.s y = [Z]
S5: add w2 = y1, wl —> S5: add w2 = y1, wl —> S4: mov t = w
S7: w3 = phi(wl, w2) S6: chk.s w2, Recovery, zO0, wl, w2 S5: add w =y, w
S7: w3 = phi(wl, w2) S6: chk.s w, Recovery, z, wt, w
- S7:
Recovery: .-
Id y1 = [z0] Recovery:
add w2 = y1, wl Id y1 = [z]
goto S7 add w = y, wt
goto S7

Example 3. Examples in which a compiler generates extra copy instructions

11

ISHIZAKI, INAGAKI, KOMATSU, & NAKATANI

In Example 3, S1, S2, S5, and S7 form a phi congruence class involving the variable w. When
speculation is applied to S3 and S5 (in italics), w1l must be live at the chk instruction (S6) since
w1l will be accessed in the recovery code. The variables wl, w2, and w3 are assigned the same
name as w during the tranglation out of the SSA form. Sincew1l islive at S6 and w2 overrideswl
at S5, wl and w2 interfere at S6. Therefore, S4 (in bold) is generated to save the value of wl as t,
and t is used in the recovery code. In this case, S5 should not be chosen as an instruction in a
speculative chain to avoid inserting the extra copy instruction.

Condition 4: Avoid interference between the destination registers of speculative instructions:
This was already suggested in [10]. A compiler must not move the definitions in the same phi
congruence class if their live ranges interfere with one another. Normally, only one path is specu-
latively moved over a particular branch based on the execution probability of each path.

5.2 Recovery Code Generation

Here, we describe a method to generate recovery code. The compiler should minimize negative
effects on the main code since the recovery code is rarely executed when exceptions have been
deferred. To achieve this goal, there are three issues to address: minimization of the live-in regis-
ter set, the generation of recovery code from the speculative chain, and avoidance of constraints
when forming bundles. In this section, we offer solutions for these issues.

In our framework, we identify the instructions on a speculative chain by traversing the DAG
since the recovery code is not represented explicitly. The instructions on a speculative chain are
marked in the main code. To generate recovery code, the compiler duplicates the marked instruc-
tions from Section 5.1 while converting non-faulting load instructions to faulting load instructions.
The recovery code is generated after the main code has been generated. The register assignment
for the recovery code is the same as that for the main code. Bundles within the recovery code can
be formed using the information from the code generation phase of the main code. Therefore, the
compiler can minimize the increase in the code size. The code generation consists of the follow-
ing four steps:

Step 1@ Generate the prolog and epilog for the recovery code.

Step 2. Generate the recovery code.

Step 3: Duplicate instructions within the same bundle of a chk instruction.

Step 4: Generate a branch instruction to return to the address of the next bundle.
We give detailed explanations for each step of the code generation below.

Step 1: In the recovery code, all killed registers except for the live-in and live-out register sets
are written to persistent memory in a prolog, and the registers are restored from memory by the
epilog. We call this the register spill set, denoted as sp. Algorithm 2 shows an agorithm to de-
termine the spill set sp.

Example 4 is an example to explain the recovery code generation. We assume that three in-
structions within the same bundle can be executed in paralel. Here, the compiler made two
speculative chains. One involves |1 and 14, and the other contains 12, 13, and 14. There are oppor-
tunities to minimize the number of chk instructions, but they are beyond the scope of this paper.
In Recovery Block 2, r2 and r11 are the live-in set, and r12 and r21 are the live-out set. Then, r12,
r13, and r21 are the kill set. As aresult, r13 isthe spill set to be saved in the prolog and restored
in the epilog. Therefore, r13 isfree for register alocation after 14.

12

Eliminating Exception Constraints of Java Programsin |A-64

Procedure calc_spillset(sc, scoth, sp)

sc: in set of instructions in the speculative chain
scoth: in set of instructions in all the speculative chains except sc
sp: out set of registers for spill set
begin
1i : set of registers for live-in set
lo : set of registers for live-out set
Kkl : set of registers for kill set
st : a statement
r, s, p : a register

kIl = 1i =1lo=¢
for (st c instructions(sc)) {
for (r c dst registers(st)) {
s = Successive use(r)
kI o= r
if ((s n src operands(sc) # ¢) |l (s n src operands(scoth) = ¢)) lo u=r

for (r c src registers(st)) {
p = Previous def(r)
if (p n dst registers(sc) == ¢) li uU=r

} -
sp = kI n (i v lo)
end
Algorithm 2. Calculation of the spill set

Before speculation After speculation
11: Id r2 = (rl) 11: Id.s r2 = (rl) // bundle 0
12: Id r12 = (rl1) 12: 1d.s ri2 = (rl11) // bundle 0
13: add ri3 = ri12, 1 13: add ri3 =ri12, 1 // bundle 0
14: add r21 = r2, ri3 14: add r21 = r2, ri3 // bundle 1
15: chk.s r2, Recoveryl // bundle 1
16: chk.s r12, Recovery2 // bundle 1
17: mov .., ri2 17: mov .., ri2 // bundle 2
182 mov .., r2i1 18: mov .., r21 // bundle 2
Recoveryl:
19: 1d r2 = (r1) // copy of 11

110: add r21 = r2, ri3 // copy of 14
111: chk.s r21, Recovery2 // copy of 16
112: goto 17

Recovery2:

113: spill ri3

114: Id r12 = (rl1) // copy of 12
115: add ri3 riz, 1 // copy of 13
116: add r21 r2, ri3 // copy of 14
117: fill r13

118: goto 17

Example 4. Recovery code generation

Step 2: The compiler duplicates the marked instructions from the corresponding speculative
chain between the prolog and the epilog while converting non-faulting load instructions to fault-
ing load instructions. A valid value will be written in the destination register since the faulting
load reloads the value without setting the NaT bit in the recovery code, even if the non-faulting
instruction setsthe NaT bit in the destination register in the main code.

In Example 4, 19 and 110 are generated from 11 and 14, while 114, 115, and 116 are generated
fromIi2to 14.

Step 3: Since bundle formation is important to extract instruction parallelism from a program,
speculation should not impose any constraints on it. Since a branch instruction can specify only
the first instruction in the first bundle as a target address, the return address from a recovery code
block is the first instruction in the second bundle. If the recovery code for a chk instruction re-
turns to the second bundle in the main code, the successor instructions for the chk instruction
within the same bundle would be skipped. To avoid this situation, the successor instructions
within the same bundle are duplicated at the end of the recovery code block.

13

ISHIZAKI, INAGAKI, KOMATSU, & NAKATANI

In the example, we assume that 11, 12, and I3 are included within a bundle, and 14, 15, and 16
are linked within another bundle. Recoveryl cannot return to the address of 16 since it can only
return to the addresses of 11, 14, or 17 as the tops of bundles. Therefore, 16 within the same bundle
is duplicated as 111 at the end of the recovery code.

Step 4: The compiler terminates the recovery code with the branch instruction, which goes
back to the next bundle following the one containing the chk instruction.

In the example of Recoveryl, the compiler generates a branch instruction 112 to the address of
17.

6 Experiments

Our experiments were performed using a product version of the IBM Devel opers Kit for 1A-64,
Java Technology Edition, Version 1.3. We implemented our exception speculation framework in
the Just-In-Time Compiler. All speculation features except for exception speculation were dis-
abled. The measurements were performed on an IBM IntelliStation Mpro (Intel Itanium dual
processor [21] 800MHz) with 1 GB of RAM, under Windows XP Advanced Server.

6.1 Efficiency of Representation

Table 1 shows the space efficiency of the DAG representations with and without exception
edges. For the DAG representation without exception edges, explicit control flow edges are used
to represent exception dependencies. We ran seven programs from the SPECjvm98 Suite [22]
with a size of 100. During the execution, 1,070 methods were compiled. A BB node represents a
basic block, while a statement node represents a statement in a basic block.

Table 1. Comparison of DAG representations with and without exception edges

DAG without exception edges [DAG with exception edges
Total number of BB nodes 142679 37327
Average number of statement nodes per BB node 1.23 4.71
Total number of edges between BB nodes 262791 54669
Total number of edges between statement nodes 80190 145952

The second row of the table shows that the DAG with exception edges drastically reduced the
total number of nodes. The third row shows an average BB node with an exception edge contains
over four instructions, while one without exception edges has dightly over one. Thus, the oppor-
tunity to apply local (intra-block) optimizationsisincreased. We can aso apply speculation using
only local optimizations, as we described in Section 1. It is important for a dynamic compiler to
avoid applying time-consuming global optimizations such as trace scheduling or percolation
scheduling.

The fourth and fifth rows show that the DAG with exception edges reduced the total number of
edges between BB nodes while it increased the number of edges between statement nodes in a
graph. This reduces the space for the DAG representation during the compilation. A similar result
has been obtained by Choi et a. in [23].

6.2 Performance Improvement by eiminating exception checks and exception constraints

We measured the effectiveness of eliminating exception checks and exception constraints by
running micro-benchmarks, the Java Grande Benchmark Suite [24] using the kernels of Section |1

14

Eliminating Exception Constraints of Java Programsin |A-64

with SizeA, and SPECjvm98 with the size of 100. Table 2 describes the Java programs used in
the experiments.

In all micro-benchmarks, two-dimensional arrays are frequently accessed in kernel loops. A
two-dimensional array consists of linked pointer vectors for simplicity of the language design and
flexibility of the declaration of an array in Java. However, no optimization can remove the excep-
tion checks for the elements in the second and higher dimensions. From the point of the view of
performance, the design is poor. Good performance improvement was expected by applying ex-
ception speculation that moves S-PEls over H-PEIs in any dimension speculatively. We choose
the Java Grande Benchmark Suite for measuring the effectiveness for computationally intensive
programs and SPECjvm98 for measuring the effectiveness for genera-purpose benchmark pro-
grams.

Table 2. Description of benchmarks characteristics

Type Benchmarks Description
Matrix Multiply Multiply two two-dimensional dense matrices.
Micro-benchmarks
All-pairs Shortest-path | Find the shortest path from the start vertex to each of the other vertices.
Series Compute the first N Fourier coefficients.
LUFact Solves an N x N linear system using LU factorization.
HeapSort Sorts an array of N integers using a heap sort algorithm.
Java Grande Benchmark Suite Crypt Performs IDEA encryption and decryption.
FFT Computes FFT's of complex, double precision data.
SOR Solve an equation by Successive Over Relaxation.
SparseMatmul Multiply two one-dimensional sparse matrices.
compress LZW compression and decompression.
jess NASA's CLIP expert system.
db Search and modify a database.
SPECjvm98 benchmarks javac Source to bytecode compiler.
mpegaudio Decompress audio file.
mtrt Multi-threaded image rendering.
jack Parser generator generating itself.

Table 3 shows the runtime performance for the micro-benchmarks, and Figure 3 shows the per-
formance improvements of the micro-benchmarks, where the four bars in each benchmark present
the performance improvement relative to our baseline for four possible combinations of enabling
exception speculation (ES) and exception check eliminations (EE). Our baseline is to avoid ap-
plying exception speculation and exception elimination optimizations (denoted as “no ES and no
EE"). Our exception check elimination algorithms are based on forward dataflow analysis, back-
ward dataflow analysis, and loop versioning. Loop versioning [4] is a technique to eliminate al
the exceptions in the nested loop by creating a safe region, within which the compiler is free to
apply optimizations such as instruction reordering. They are software approaches for eliminating
S-PEIs as described in Section 2. Exception speculation is effective regardless of whether or not
any exception elimination optimizations are applied.

When exception check eliminations are not performed, exception speculation improves the per-
formance by 28% and 30%. It is effective for all benchmarks, since there are many S-PEIs in

15

ISHIZAKI, INAGAKI, KOMATSU, & NAKATANI

most of these kernel loops, asistypica in Java programs. When exception check eliminations are
performed, exception speculation improves the performance by 0% and 30%.

Table 3: Runtime performance measurements for the micro-benchmarks

(unit: sec) Matrix Multiply All-pairs Shortest-path
No ES and no EE 2.77 10.38
ES and no EE 2.16 7.99
No ES and EE 2.34 5.34
ES and EE 1.80 5.35

1.8

1.6

1.4

1.2 4

Speed up (higher bars means better

0.8 4

Matrix Multiply All-pairs Shortest-path

|I:INOESandnoEE OESandnoEE EINo ES and EE IESandEEl

Figure 3. Runtime performance improvements for the micro-benchmarks

Table 4 shows the runtime performance for the Java Grande Benchmark Suite, and the left half
in Figure 4 shows the performance improvements for the Java Grande Benchmark Suite for four
possible combinations of the optimizations relative to our baseline (ho ES and no EE).

When exception check eliminations are not applied, exception speculation aters the perform-
ance from -27% to 15% (with an average of 0.0%). It is particularly effective for SOR and
SparseMatmul. This is because there are many opportunities to move H-PEI over S-PEI specu-
latively since no S-PEI is eliminated. When exception check eliminations are applied, exception
speculation changes the performance from -10% to 13% (with an average of 1.7%). It is also ef-
fective for SOR and SparseMatmul. This is because the kernel loop of SOR accesses two-
dimensiona arrays frequently, and the kernel loop of SparseMatmul has indirect accesses to the
array element. Since known exception elimination techniques cannot eliminate S-PEIs for multi-
dimensiond arrays and indirect arrays, there are still rooms to move S-PEIs over H-PEIs specula
tively.

In HeapSort, the performance is degraded by 27% when exception check eliminations are not
performed, despite the fact that the critical path length in a kernel loop can be reduced by 17%. In
Crypt, the performance is degraded by 10% when exception check eliminations are performed.
Since NullPointerException or IndexOutOfBoundsException do not occur in these bench-
marks, no non-faulting load instruction with an invalid effective address will ever be executed.
Thus, the recovery code is not executed due to deferred exceptions by a memory fault. Both per-
formance degradations are probably due to deferred exceptions from the TLB misses, leading to
the execution of the recovery code.

Table 5 shows the runtime performance for SPECjvm98, and the right half in Figure 4 shows
the performance improvements of SPECjvm98 for four possible combinations of the optimiza-
tions relative to our baseline (no ES and no EE).

16

Eliminating Exception Constraints of Java Programsin |A-64

When exception check eliminations are not applied, exception speculation aters the perform-
ance from -2% to 5% (with an average improvement of 1.1%). It is particularly effective for
compress and mpegaudio, both of which include many S-PEls. When exception check elimina-
tions are applied, exception specul ation changes the performance from -2% to 12% (with an aver-
age of 1.3%). It is effective for mpegaudio and mtrt. In the case of mpegaudio, its kernel 1oop
frequently accesses two-dimensional arrays. As we described in Section 3.2, our production com-
piler aggressively eliminates exception checks against the references to instance variables and
array elements in the first dimension. Therefore, exception speculation is not effective in our im-
plementation for a program that accesses one-dimensional arrays or instance variables frequently.

Example 5 @) shows a part of the kernel loop from mpegaudio. Example 5 b) is an intermedi-
ate representation compiled from Example 5 @) before applying exception check eliminations.
Our exception check eliminations move the exception checks for the arrays A and C out of aloop,
because the complete ranges of 1 and j within the loop can be determined by compile time analy-
sis and the compiler can generate a safe loop where all exception checks on the arrays A and C are
eliminated. The result is shown in Example 5 c). Since the value of the array C is loop-variant and
a two-dimensiona array consists of linked pointer vectors, no optimization can remove the
exception checks for the element accesses of the array C_2. Thus, exception speculation
effectively eliminates the exception dependence associated with these accesses. In fact, exception
speculation reduces the critical path length from 37 to 35 cyclesfor the entire kernel loop.

Since NullPointerException or IndexOutOfBoundsException do not occur in the program,
any non-faulting load instruction with an invalid effective address will never be executed. Thus,
the recovery code is not executed due to deferred exceptions from a memory fault. The perform-
ance degradation is probably due to deferred exceptions by the TLB misses, leading to the execu-
tion of the recovery code. We aso observed that exception speculation is effective for programs
that accesses indirect arrays or multi-dimensional arrays in the cases where those known excep-
tion elimination techniques cannot reduce the number of exception checks. Thus, exception
speculation is still effective even when known exception elimination techniques are applied.

Table 4: Runtime performance measurements for the Java Grande Benchmark Suite

(unit: sec) Series LUFact HeapSort Crypt FFT SOR SparseMatmul
No ES and no EE 33.58 2.86 2.37 3.07 23.08 10.39 8.96
ES and no EE 33.56 2.84 321 3.23 22.73 9.05 7.85
No ES and EE 33.59 1.96 1.25 2.89 22.81 9.64 8.65
ES and EE 33.57 1.97 1.26 3.18 22.60 8.89 8.89

Table 5: Runtime performance measurements for SPECjvm98

(unit: sec) compress jess db javac mpegaudio mtrt jack
No ES and no EE 23.04 10.57 38.41 13.22 20.53 6.67 9.68
ES and no EE 22.00 10.57 37.93 13,29 19.56 6.74 9.84
No ES and EE 16.93 9.45 35.11 11.97 12.41 5.99 8.86
ES and EE 17.11 9.47 35.08 12.23 11.55 5.94 8.84

17

ISHIZAKI, INAGAKI, KOMATSU, & NAKATANI

|
© ©

-
1N

etter)t
[

(&)

bars meatts b
w B

gpe&d ug (hi%ler

o
©
N

Series LUFact HeapSort Crypt FFT SOR SparseMatmul compress jess db javac mpegaudlo mitrt jack
[ONoESandno EE DESandnoEE ENoESand EE MES and EE |

°
3
N

Figure 4. Runtime performance improvements for the Java Grande Benchmark Suite and SPECjvm98

for (int j = 0; jJ <n; j++t) { Ffor (int j = 0; j < n; j++) { nullcheck A;
float A_2[] = A[i++]; nullcheck A; nullcheck C;
float C_2[]1 = C[i1:; boundcheck A[i]; for (int j =0; j <n; j++) {
f += C_2[k+16] * A _2[0]; nullcheck C; A 2[1 = ALi++];
3} boundcheck C[j1; C_2[1 = CLil;
A_2[1 = ALi++]; nullcheck A_2;
c2[1 =cCcul: boundcheck A _2[0];
nullcheck A 2; nullcheck C_2;
boundcheck A_2[0]; boundcheck C_2[k+16];;
nullcheck C_2; T += C_2[k+16] * A_2[0];
boundcheck C_2[k+16];
f += C_2[k+16] * A_2[0];
}
a) A part of the kernel b) Before eliminating c) After eliminating

exception checks in IR exception checks in IR
Example 5. A part of the kernel loop of mpegaudio

6.3 Code Size Expansion

We also measured the static code size expansion when exception check eliminations and excep-
tion speculation are performed.

Figure 5 shows the static code size expansion of each kernel method relative to that of our
baseline (no ES and no EE) for four possible combinations. Exception check eliminations reduce
the code size by an average of 8.8% when exception speculation is not performed. In Matrix Mul-
tiply, the code size is larger than that of the baseline even when exception check eliminations are
performed. Thisis because loop versioning duplicates the kernel 1oop to create a safe region even
for the case in which our exception check eliminations do not remove exception checks.

Exception speculation increases the static code size from 55% to 79% without exception check
elimination, and it increases the static code size from 27% to 44% with exception check elimina-
tions.

18

Eliminating Exception Constraints of Java Programsin |A-64

18
17
1.6
15
14
1.3 1
1.2 1
1.1

1
0.9 +—
0.8 +—
0.7

Code expansion (Shorter bar means better)

Matrix Multiply All-pairs Shortest-path
| ONoESandnoEE EIESandnoEE EINoESand EE MES and EE |

Figure 5. Static code size expansion of a kernel method for the micro-benchmarks

The left half in Figure 6 shows the static code size expansion of the Java Grande Benchmark
Suite relative to our baseline (no ES and no EE) for four possible combinations. Exception specu-
lation increases the static code size from 7.3% to 11.0% (with an average of 8.5%) when excep-
tion check eliminations are not performed. Exception speculation increases the static code size
from 2.9% to 5.6% (with an average of 3.6%) when exception check eliminations are not per-
formed. Unlike the micro-benchmarks, the code growth is not significant.

Theright half in Figure 6 shows the static code size expansion for SPECjvm98 relative to our
baseline (no ES and no EE) for four possible combinations. Exception speculation increases the
static code size from 3.4% to 10.0% (with an average of 5.9%) when exception check elimina
tions are not performed. Exception speculation increases the static code size from 0% to 7.9%
(with an average of 3.0%) when any exception check elimination techniques are not performed.
Unlike the micro-benchmarks, the code growth is not significant. Since SPECjvm98 consists of
non-numerical programs, code growth is smaller than for the Java Grande Benchmark Suite. The
largest code growth (7.9%) was observed for mpegaudio along with its significantly better per-
formance. Thisindicates that exception speculation is applied aggressively here.

[

i
n
|

Code gxpansion (Shorter bar means better)
o © b
: 1

°
3

Series LUFact HeapSortt Crypt FFT . SOR SparseMatmul compress jess db -javac _mpegaudio mtrt jack
| ONoESandno EE OESandnoEE ENo ESand EE MES and EE |

Figure 6. Static code size expansion for the Java Grande Benchmark Suite and SPECjvm98

19

ISHIZAKI, INAGAKI, KOMATSU, & NAKATANI

7 Conclusions

We have proposed a new exception speculation framework that shortens the critical path length
constrained by exception dependence for Java programs. By using exception dependence edges
and associating the critical path length with each basic block in the SSA-based DAG representa-
tion, speculative chains can be effectively selected to schedule a sequence of the most profitable
instructions across every Java exception check (S-PEI), without generating any extra copy in-
structions. Unlike the previous work of Arnold et al. [15], our framework does not introduce any
conditional branches. Our experimental results confirm that our framework reduces the space for
the DAG representation during the compilation. For the recovery code generation, our proposed
method does not increase the register pressure on the critical path nor the restrictions on the fina
code scheduling (bundle formation) phase.

Our preliminary results on an 1A-64 Itanium processor show that exception speculation im-
proves the performance by 30% for one of the micro-benchmark programs, and up to 13% (with
an average of 1.7%) for the Java Grande Benchmark Suite, and up to 12% (with an average of
1.2%) for SPECjvm98, even when exception check eliminations are performed. The experiments
show that our speculation technique is effective particularly for those programs that are
computationaly intensive or that access multi-dimensiona arrays frequently in the cases where
those known exception elimination techniques cannot reduce the number of exception checks.
Thus, exception speculation is complementarily effective even when known exception
elimination techniques are applied. We aso observe some performance degradations that are
probably due to deferred exceptions from the TLB misses, leading to the execution of the
recovery code.

Acknowledgement

We thank the staff of Network Computing Platform at Tokyo Research Laboratory for imple-
menting our JIT compiler. We would like to thank the anonymous reviewers for their useful
comments.

References

[1] S A.Mahlke, W. Y. Chen, R. A. Bringmann, R. E. Hank, W. W. Hwu, B. R. Rau, and M.
S. Schlansker. “ Sentinel Scheduling: A Modd for Compiler-Controlled Specul ative Execu-
tion.” ACM Transactions on Computer Systems, 11(4), pp. 376-408, 1993.

[2] B.C.Le. “An Out-of-Order Execution Technique for Runtime Binary Translators.” In Pro-
ceedings of the International Conference on Architectural Support for Programming Lan-
guage and Operating Systems, pp.151-158, 1998.

[3] Intel Corp. “I1A-64 Application Developer's Architecture Guide.”
http://devel opers.intel .com/desi gn/iaé4/downl oads/adag.htm.

[4] T. Suganuma, T. Ogasawara, M. Takeuchi, T. Yasue, M. Kawahito, K. Ishizaki, H. Koma-
tsu, and T. Nakatani. “Overview of the IBM Java Just-in-Time Compiler.” IBM Systems
Journal, 39(1), pp. 175-193, 2000.

[5] J. Whaley. “Dynamic Optimization through the Use of Automatic Runtime Specialization.”
M. Eng. thesis, Massachusetts Institute of Technology, 1999.

20

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

Eliminating Exception Constraints of Java Programsin |A-64

M. Kawahito, H. Komatsu, and T. Nakatani. “Effective Null Pointer Check Elimination
Utilizing Hardware Trap.” In Proceedings of the International Conference on Architectural
Support for Programming Language and Operating Systems, pp. 139-149, 2000.

M. D. Smith, M. S. Lam, and M. A. Horowitz. “Boosting Beyond Static Scheduling in a
Superscalar Processor.” In Proceedings of the 17th Annua International Symposium on
Computer Architecture, pp. 344-354, 1990.

W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A. Bringmann, R. G.
Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and D. M. Lavery. “The Super-
block: An Effective Technique for VLIW and Superscalar Compilation.” Journal of
Supercomputing, 7(1), pp. 229-248, 1993.

D. I. August, B. L. Deitrich, and S. A. Mahlke. “Sentinel Scheduling with Recovery
Blocks.” Computer Science Technical Report CRHC-95-05, University of Illinois, Urbana,
1995.

R. D. Ju, K. Nomura, U. Mahadevan, and L. We. “A Unified Compiler Framework for Con-
trol and Data Speculation.” In Proceedings of the Conference on Parallel Architectures and
Compilation Techniques, pp. 157-168, 2000.

R. Zahir, D. Morris, J. Ross, and D. Hess. “OS and Compiler Considerations in the Design
of the IA-64 Architecture.” In Proceedings of the International Conference on Architectural
Support for Programming Language and Operating Systems, pp. 212-221, 2000.

D. M. Gallagher and W. Y. Chen and S. A. Mahlke and J. C. Gyllenhaal and W. W. Hwu.
“Dynamic Memory Disambiguation Using the Memory Conflict Buffer.” In Proceedings of
International Conference on Architectural Support for Programming Languages and Operat-
ing Systems, pp. 183-193, 1994.

R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. “Efficiently Com-
puting Static Single Assignment Form and the Control Dependence Graph.” ACM Transac-
tions on Programming Languages and Systems, 13(4), pp. 451-490, 1991.

C. Chambers, I. Pechtchanski, V. Sarkar, M. J. Serrano, and H. Srinivasan. “Dependence
Analysis for Java” In 12th International Workshop on Languages and Compilers for Paral-
lel Computing, pp. 35-52, 1999.

M. Arnold, M. S. Hsiao, U. Kremer, and B. Ryder. “Exploring the Interaction between
Javas Implicitly Thrown Exceptions and Instruction Scheduling.” International Journal of
Parallel Programming, 29(2), pp. 111-137, 2001.

K. Ebcioglu and E. R. Altman. “DAISY: Dynamic Compilation for 100% Architectural
compatibility.” In Proceedings of the International Symposium on Computer Architecture,
pp. 26-37, 1997.

J. Knoop, O. Ruthing, and B. Steffen. “Optima Code Motion: Theory and Practice.” ACM
Transactions on Programming Languages and Systems, Vol.17, No. 5, pp. 777-802, 1995.
M. Gupta, J.-D. Choi, and M. Hind. “Optimizing Java Programs in the Presence of Excep-
tions.” In Proceedings of the 14th European Conference on Object-Oriented Programming,
pp. 422-446, 2000.

P. B. Gibbons and S. S. Muchnick. “Efficient Instruction Scheduling for a Pipelined Archi-
tecture.” In Proceedings of SIGPLAN ’'86 Symposium on Compiler Construction, pp. 11-16,
1986.

V. C. Sreedhar, R. D. Ju, D. M. Gillies, and V. Santhanam. “Translating Out of Static Single
Assignment Form.” In Proceedings of Static Analysis Symposium, LNCS 1694, pp. 194-
210, Springer Verlag, 1999.

21

ISHIZAKI, INAGAKI, KOMATSU, & NAKATANI

[21] Intel Corp. “Itanium™ Processor Microarchitecture Reference.”
http://devel opers.intel.com/design/iab4/downl oads/245474.htm.

[22] Standard Performance Evaluation Corp. SPEC JVM98 Benchmarks, available at
http://www.spec.org/osg/jvmog/.

[23] J.-D. Chai, D. Grove, M. Hind, and V. Sarker. “Efficient and Precise Modeling of Excep-
tions for the Analysis of Java Programs.” In Proceedings of ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engineering, pp. 21-31, 1999.

[24] M. Bull, L. Smith, M. Westhead, D. Henty, and R. Davey. “A Methodology for Benchmark-
ing Java Grande Applications.” In Proceedings of ACM 1999 Java Grande Conference, pp.
81-88, 1999.

22

