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Abstract 

Data communications between producer instructions and consumer instructions through 
memory incur extra delays that degrade processor performance. In this paper, we introduce a new 
storage media with a novel addressing mechanism to avoid address calculations. Instead of a 
memory address, each load and store is assigned a signature for accessing the new storage. A 
signature consists of the color of the base register along with its displacement value. To represent 
distinct register content, a unique color is assigned to a register whenever the register is updated. 
When two memory instructions have the same signature, they address to the same memory 
location. This memory signature can be formed early in the processor pipeline. For fast data 
communication, a small Signature Buffer, addressed by the memory signature, can be established 
to permit stores and loads bypassing normal memory hierarchy. Performance evaluations based on 
an Alpha 21264-like pipeline using SPEC2000 benchmarks show that an IPC (Instruction-Per-
Cycle) improvement of 12-17% is possible using a small 8-entry signature buffer. 

1.  Introduction 

Program execution obeys a sequence of instructions that operate on a collection of data. Data 
communication among instructions usually goes through storages that save intermediate values 
from a producer instruction for future consumer instructions. Two types of storages, registers and 
memory, are available in a processor. A small number of architecture registers can supply data for 
operations seamlessly. Memory, on the other hand, is large and slow, even with caches that enable 
fast accesses for recently used data. Due to the disparity of speeds, modern processors permit 
instructions to only directly operate on data from registers, and use loads and stores to move the 
data between memory and registers. Therefore, data communication among instructions may go 
through an indirect path:  producer � store � load � consumer. 

In spite of mapping as many program locations to limited registers as possible by the 
compiler, it is inevitable to use memory for data communication. Due to a load often encountered 
right before the consumer needs for efficient usage of registers and its inherent delays in 
generating the address and accessing large storages, loads along with their dependent instructions 
are likely located on the program’s critical path [24]. The performance penalty of load latency 
will worsen in future processors. As the feature size continues to shrink and clock speed 
approaches 10 GHz, it is estimated that the access time of a 64KB first-level cache (L1) will take 
three to seven cycles according to different clock scaling factors using a 35nm technology [1]. 
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Simulation studies show that each additional cycle in accessing the L1 data cache degrades the 
overall IPC by about 3.5% on an Alpha 21264-like pipeline running a set of SPEC2000 programs.  

To achieve a zero-cycle load, i.e. the load and its dependent instructions can be fetched, 
dispatched and executed at the same time; we introduce a new storage structure that can be 
accessed in early pipeline stages [20]. The new storage has a very small physical structure to 
enable fast access time. In addition, it uses a novel addressing mechanism to avoid any address 
calculation. Each load and store uses a signature for accessing the new storage. A signature 
consists of the color of the base register along with the displacement value. Each color represents 
a unique instance of the base register. A new color is assigned whenever the content of the register 
is updated. When two memory instructions have the same color, they address memory locations 
with the same base address. In this case, the displacement value correctly identifies the data item 
with respect to the base address. A small Signature Buffer (SB) addressed by the memory 
signature can be established to provide data for memory operations non-speculatively. Accessing 
the SB is initiated early in the pipeline after a memory instruction is fetched and decoded since 
the signature can be formed directly from the encoding bits of the instruction code. 

 Memory dependences or correlations of store-load or load-load are preserved with 
signatures. This property exists in many program constructs such as accessing global and local 
variables, saving/restoring registers during procedure/function calls, referencing structure records 
using pointers in linked data structures, or accessing array elements in loop iterations. 
Performance evaluations based on the selected SPEC2000 benchmarks running on an Alpha 
21264-like processor model show that 70% of the loads can benefit from a small 8-entry SB to 
reduce access latency. This latency reduction translates to about 12-17% IPC (Instruction-Per-
Cycle) improvement.   

The remaining paper is organized as follows. The motivations and important observations for 
the proposed method will be described in section 2. This is followed by discussions of design and 
related issues for establishing the SB in Section 3.  In Section 4, performance evaluations of the 
IPC improvement as well as the SB hit ratios are given. Several design parameters and 
alternatives for the SB are also evaluated. In addition, an extension of the coloring scheme to 
handle constant increment/decrement of base registers will be described and evaluated. The 
applicability of the SB on Intel’s x86 instruction set architecture will be discussed in Section 5. A 
few related works on hiding cache latency will be given in Section 6. Finally, Section 7 concludes 
the paper.    

2.  Memory Reference Correlations 

Store-load and load-load memory dependences can be correlated directly by the signature if they 
use the same base register with the same displacement value as long as the base registers have an 
identical content (i.e. the same color). Memory references also exhibit strong spatial locality 
using the signature as nearby memory references often differ only by a small quantity of the 
displacement value. In this section, we provide two programming examples from SPEC2000 
integer programs to describe qualitatively the existence of such store-load and load-load signature 
correlations and signature reference locality in real programs. In Figure 1, an example function 
copy_disjunct from Parser is given. This function is invoked many times to build a new copy of a 
disjunct list. The second example bsW is extracted from Bzip (Figure 2). This function is also 
invoked multiple times to perform bit-stream I/Os. The store/load signature correlation and 
reference locality can be observed in several program constructs.  
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Disjunct * copy_disjunct(Disjunct * d) {
    Disjunct * d1;
    if (d == NULL) return NULL;
    d1 = (Disjunct *) xalloc(sizeof(Disjunct));
    *d1 = *d;
    d1->next = NULL;
    d1->left = copy_connectors(d->left);
    d1->right = copy_connectors(d->right);
    return d1;
}

copy_disjunct:
addiu $sp,$sp,-32
sw $s1,20($sp)
addu $s1,$0,$a0
sw $ra,24($sp)
sw $s0,16($sp)
beq $s1,$0,<copy_disjunct>
addiu $a0,$0,20
jal <xalloc>
addu $s0,$0,$v0
lw $v0,0($s1)
lw $v1,4($s1)
lw $a0,8($s1)
lw $a1,12($s1)
sw $v0,0($s0)
sw $v1,4($s0)
sw $a0,8($s0)
sw $a1,12($s0)
lw $v0,16($s1)
sw $v0,16($s0)
sw $0, 0($s0)
lw $a0,12($s1)
jal <copy_connectors>
......
lw $ra,24($sp)
lw $s1,20($sp)
lw $s0,16($sp)
addiu $sp,$sp,32
jr $ra

Register save/
restore

Access linked
records

 
 

 

 

      Access Records in Linked Data Structures: As shown in Figure 1, the pointers d, d1 are 
used to copy and construct a new node in the linked structure. Different records (also pointers in 
this case) in each node of the old and the new linked structures are accessed using pointers d, d1. 
In the assembly code, the two pointers are loaded in registers $s0, $s1 and are used as the base 
registers to access these variations of records with small displacement values. The signature 
correlation and reference locality among these memory accesses are clearly demonstrated. 

Register Save and Restore in Functions:  In example I, strong spatial locality exists when 
restoring register contents in function copy_disjunct. In addition, store-load signature correlations 
exist with matched base register $sp and displacement value for saving and restoring register 
contents without intervening function calls. The invocations of xalloc and copy_connectors may 

  Figure 1.  Example I – Source and Assembly Codes of Function copy_disjunct from Parser 
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change the color of the $sp, but the original content of the $sp is restored after returning from the 
function calls to address caller’s stack frame. 

Access Array Variables:  Similar store/load correlations are also observed in accessing array 
data structures in other program code. For example, intensive array accesses are observed in 
several functions, such as _word_fwd_aligned() in wordcopy.c in Gcc of SPEC2000. Nearby 
references to the same or different elements of the same array with the same base address provide 
signature correlations of stores and loads. 

 
Access Global Variables:  As shown in Figure 2, three global variables, bsBuff, bsLive and 

bytesOut are accessed when the function bsW is invoked. Due to the limited registers, these 
variables are loaded/stored multiple times based on the same global pointer $gp with a constant 

#define bsNEEDW(nz)
{
   while (bsLive >= 8) {
      spec_putc (

(UChar)(bsBuff >> 24),
         bsStream );
      bsBuff <<= 8;
      bsLive -= 8;
      bytesOut++;
   }
}

Caller (SendMTFValues) of bsW:

......
lbu $v0, 0($s1)
......
lbu $v0, 0($v0)
......
lw $a1, 0($v1)
jal <bsW>
lbu $v1, 0($s1)
......

(c)

Access global variables

Callee save/restore

INLINE void bsW ( Int32 n, UInt32 v )
{
   bsNEEDW ( n );
   bsBuff |= (v << (32 - bsLive - n));
   bsLive += n;
}

(a)

bsW:  lw $v0,-32124($gp)
      addiu $sp,$sp,-32
      sw $s0,16($sp)
      addu $s0,$0,$a0
      sw $s1,20($sp)
      addu $s1,$0,$a1
      sw $ra,24($sp)
      slti $v0,$v0,8
      bne $v0,$0, <L2>
L1:   lbu $a0,-32144($gp)
      lw $a1,-32100($gp)
      jal <spec_putc>
      lw $v0,-32144($gp)
      lw $v1,-32124($gp)
      lw $a0,-32116($gp)
      ......
      beq $v1,$0,<L1>
L2:   addiu $v0,$0,32
      lw $a0,-32124($gp)
      subu $v0,$v0,$s0
      lw $v1,-32144($gp)
      subu $v0,$v0,$a0
      sllv $v0,$s1,$v0
      or $v1,$v1,$v0
      addu $a0,$a0,$s0
      sw $v1,-32144($gp)
      sw $a0,-32124($gp)
      lw $ra,24($sp)
      lw $s1,20($sp)
      lw $s0,16($sp)
      addiu $sp,$sp,32
      jr $ra

(b)

Figure 2.  Example II - Source and Assembly Codes of Function bsW from Bzip. (a) Source 
Code;  (b) Assembly Code;  (c) Caller of bsW 
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base address. Obviously, the access of global variables exhibits both signature correlations and 
spatial locality. 

Access Local Variables:  In the bsW, the callee-saved registers $s0 and $s1 are freed up for 
local usages to avoid saving parameters of n and v from registers $a0 and $a1 to the local stack 
frame and retrieving them later for computations. However, in functions that involve more 
complex computations and/or more temporary local variables, it is inevitable to increase the local 
stack accesses using the stack pointer $sp and/or the frame pointer $s8 as base registers. Such 
accesses to the small stack frame usually display signature correlations and spatial locality. 

General Save/Restore Base Registers:  There is evidence that even if the base register has 
been updated between two memory accesses, the content of the base register may stay the same. 
A base register may be freed up for other usages and the original base address is restored before 
the next memory reference. In Figure 2, we also include a partial assembly code from a caller 
SendMTFValues of the bsW.  In this caller, $s1 is used as a base register before calling the bsW. 
After returning from the bsW, $s1 is restored and continues to be used as a base register.  

Passing Pointers among Multiple Functions:  We also observe in other programs, e.g. Mcf, 
that register class $a is sometimes used to pass pointers among several levels of function calls. 
The pointer in $a is used as the base register in several functions without any save/restore the 
content of $a. As a result, the same color for $a is maintained across multiple functions to keep 
the signature correlation alive. 

3.  Establishing A Signature Buffer 

In Figure 3, a load is used to illustrate the basic design of the Signature buffer (SB). Besides a 
small, fully-associative SB, correct signatures for memory instructions can be established using a 
Color Register (CR) and a Current Color Table (CCT). The CR keeps the next available color and 
the CCT records the current color of each register. Initially, each CCT entry is set to the 
corresponding ID (from 0 to 31) of each register, while the content of CR is set to 32 (assuming 
32 registers). When a load is decoded in-order, the current color of the base register (R1) is 
fetched from the CCT. The color is concatenated with the displacement value from the encoding 
bits of the load to form the signature. Meanwhile, the new color of the destination register (R2) is 

Load    R2, 100 (R1)

DisplacementColor

Color Register

Incrementer

Current Color
Table (CCT)

R0

R1

R2

R3

Signature Buffer (SB)

Signature

 

           Figure 3.  Memory Signature and Signature Buffer 
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updated from the CR and the CR is incremented afterwards. This new color assignment takes 
place for all instructions that involve a register update. To guarantee correct data access, all 
assigned colors along with the SB are flushed when the color has reached its maximum value and 
is wrapped around to the initial value. Essentially, a base register is renamed to a new color upon 
an update to the register. When two memory moves have the same color, they always have the 
same base address. This coloring technique conservatively assigns a unique color to represent the 
register content without accessing the register file to avoid any stall due to data dependent on base 
register updates. 

The signature buffer is always accessed in-order after the signature is formed. When the 
signature of a load matches the signature of a line in the SB, the data can be obtained non-
speculatively from the SB. This is similar to a virtually addressed cache such that a match of the 
virtual address guarantees the correct data found in the cache [6]. The SB can be thought as a 
virtual cache using the signature as the virtual address. Since the SB is accessed right after the 
load is decoded, it is conceivable that load dependents can also be fetched and issued without any 
delay. Several design issues of the SB will be discussed in subsequent sub-sections. 

3.1.  Data Alignment 

The low-order bits in the signature, i.e. the offset bits within a signature line, may not be the same 
as the offset bits in the real memory address. In order to exploit the spatial reference locality, the 
cache line fetched from the first-level cache (L1) needs to be rearranged in the SB to align with 
the memory signature. The basic alignment algorithm works as follows. When a memory request 
misses the SB, the target cache line is fetched. The target byte/word is placed in the SB according 
to offset bits of the signature.  For example, assume there are eight units in a cache line as shown 
in Figure 4. The signature offset of the target unit is 001, but the offset of the real address is 100.  
In this case, the target data 100 is loaded into unit 001 in the SB, and remaining units are loaded 
according to their relative position to the target unit. Each SB line may contain a part of two 
consecutive L1 lines. We refer these two parts as the High and the Low partitions. In the example 
in Figure 4, the partial SB line fill is located in the Low partition of the SB line. 

Due to the alignment, there are two options to fill an SB line. The straightforward option is to 
fill only a partial SB line and drop the extra data from the target L1 line. Other options include 
fetching the second L1 cache line to fill the entire SB line, and/or to place the extra-unaligned L1 
data into the 2nd SB line to further benefit spatial locality. 
 

3.2.  Handling Signature Synonym 

111 110 101

010 001 000

001 000010011100

011100101110111

Alignment

SB Line (partial)

L1 Cache LIne Extra Data

Unfilled Data

 

Figure 4.  Data Alignment in Signature Buffer 
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One essential issue in designing the SB is to handle the synonym of memory signatures when two 
distinct signatures are mapped to the same memory address. This synonym problem has some 
similarity with that in virtual caches. In addition to the signature tag, the corresponding L1 
address tag is also saved in the SB directory. After the memory address is generated upon an SB 
miss, a match through L1 address tags in the SB can identify any signature synonym. A synonym 
hit occurs if the line is located in the SB under a signature with a different color. In this case, the 
line is invalidated from the old and moved to the new locations. Given that the proposed SB is 
fully-associative with small number of lines, the SB synonym can simply be managed by 
snooping the SB on every replacement. Virtual caches with set-associative design require extra 
hardware to resolve synonyms.  

However, signature synonym is complicated by the fact that each signature line may be 
aligned to have a portion of two consecutive L1 cache lines. Care must be taken to distinguish a 
synonym hit and to invalidate the line from two possible SB locations. The detailed procedure is 
described as we walk through the following example.  

 

In Figure 5, the contents of the SB along with the data alignment between the SB and the L1 
cache lines are illustrated. The SB directory records the signature tag, the L1 address tag, the 
validity bits, and the boundary of High and Low partitions. An SB hit is identified when the tag 
matches and the target High/Low partition is valid. The boundary of the partition determines the 
High/Low partition. Recall that due to the data alignment, the High/Low partitions indicate two 

SB tag Valid Bound

Tag

101

101A

B

C

D

V-V

I-V

000

101 001

010

101

100

SB Directory

L1 Tag Array

SB Data Array

L1 Data Array

 Reguests   (Signature):       A-001 A-101 B-010 X-000

(Real Address): C-100 D-000 D-101 D-000

L1 tag

C

D

 

Figure 5.  Tag Arrays and Data Alignment between SB and L1 Cache for 4 
Consecutive Requests;  A, B, X Are Signature Lines;  C, D Are L1 Cache Lines;  
Three Binary Bits Are Target Unit;  “Bound” is Boundary of  High / Low Partitions 
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data regions from two L1 cache lines. These two lines must be consecutive because each L1 line 
cannot exist in the SB with two different colors (i.e. a synonym case). Therefore, only a single L1 
address tag is recorded in the SB directory. Note that for simplicity of address comparisons, two 
L1 tags may be maintained for each signature line in the small SB. 

Assume that three consecutive memory requests with signatures: A-001, A-101, and B-010 
are issued, where the binary bits represents the target unit in each signature line. All three requests 
have an identical color, and A, B are two consecutive signature lines. These requests are mapped 
to the corresponding L1 lines: C-100, D-000, and D-101 in the L1 cache, where C and D are 
adjacent lines. Based on the data alignment, the most significant 5 units of line C are loaded to the 
SB for the first request. A simple 2's compliment subtraction of the L1 unit ID from the SB unit 
ID can determine the High/Low partition and the correct boundary. For the first request, (0,001 - 
0,100 = 0,001 + 1,100 = 1,101); the result sign bit ‘1’ indicates the partition is ‘Low’, and the 
magnitude ‘101’ is the boundary. The L1 address tag, the corresponding valid bit, and the 
boundary 101 are recorded in the SB tag array.  

The second request is also a miss even though tag A matches because the target unit 101 is in 
the invalid partition. Only the less significant 3 units of L1 line D are loaded to the most 
significant 3 units of signature line A. Both valid bits of the High/Low partitions of A are now set. 
The third request addresses a different signature line B, and causes another miss. Again, 
according to the alignment, the most significant 5 units of line D are loaded to the lower 5 units of 
line B in the SB. Next, the fourth request to a signature line X is issued and misses the SB. This 
request is mapped to D in the L1 cache with a different color than that of A and B. Now, a 
synonym hit is detected and D must be invalidated from the SB. Two invalidations are needed, 
one on the High partition of A and the other on the Low partition of B. 

3.3.  Memory Dependence Disambiguation and Data Forwarding 

The SB and the L1 cache are updated when stores are committed. To shorten memory dependence 
latency, the stored data can be forwarded to dependent loads before the store is committed. This 
store-load forwarding through the Load Store Queue (LSQ) has been applied to bypass the L1 
data cache. The store-load dependence can be resolved based on the address comparison. This 
dependence resolution is more critical with the SB for two reasons. First, upon an SB hit, a load 
may have to wait for any uncommitted store ahead of the load in the LSQ. The uncertainty of 
memory dependences may hinder the load and degrades the advantage of fetching data from the 
SB. Second, early resolution of store-load forwarding allows bypassing the SB. Using the 
signature instead of the address, certain memory dependences can be resolved in parallel with the 
SB access. Several steps using an expanded LSQ to alleviate this memory dependence delay are 
summarized below. 

• Early store-load forwarding:   When a load has an identical signature with an early store in 
the LSQ, and there is no intervening store in between, the load bypasses the SB and gets the data 
from the early store. An intervening store has a different color and is a potential synonym to the 
load.  

• Early SB access with memory disambiguation: The SB is accessed after a load is fetched 
and decoded. The data obtained from the SB can trigger dependent instructions without delays if 
there is no intervening store ahead of the load in the LSQ. 

• Delayed SB access:  The SB is successfully accessed after memory dependence resolutions 
because of an existence of intervening stores 

• Forwarding from early SB misses:  When consecutive SB misses are to the same SB line, 
the later miss gets the forwarded data from the early miss. This forwarding can happen before the 
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load address is computed. (This case is considered as a partial SB hit.)  
• Handling multiple SB misses to the same L1 line:  When multiple SB misses with 

different colors to the same L1 line are detected through the LSQ search, later misses are blocked 
from accessing the L1 cache and the requested data will be forwarded when the first miss data is 
available from the L1. (This is a synonym case.) 

• Normal store-load forwarding:  When a load or a store address is computed, a search 
through the LSQ to identify the store-load forwarding is performed the same as the normal store-
load forwarding. 

For better performance, aggressive early store-load forwarding and speculative use of the SB 
data are possible by predicting the existence of memory dependences with the cost of recovery 
upon mis-predictions. 

3.4.  Integrated Pipeline Microarchitecture 

The SimpleScalar pipeline is modified and expanded to accommodate performance studies of the 
SB [4]. Figure 6 shows the baseline microarchitecture, which is more in-line with the Alpha 
21264 [14]. The dispatch stage in the SimpleScalar pipeline is partitioned into a 
Decode/Dependence and a Rename stages. In the Decode/Dependence stage multiple instructions 
are decoded, and dependences among instructions in the decode/issue packet are detected. The 
decoded instructions (micro-ops) are renamed to reorder buffer (RUU) entries at the Rename 
stage. The original issue/execute stage becomes a Schedule, a Register read, and an Execute 
stages to reflect the delays in scheduling, operands fetching, and execution. 

A zero-cycle load can be achieved as long as the load data is ready on or before the Register 
stage. Therefore, even with a 4-cycle SB, the load can still trigger the dependents without any 
delay. The two fast paths in the figure illustrate advantages with an integrated SB. A load can 
jump to the Writeback stage after the Rename stage on an SB hit or an early store-load forwarding 
as indicated by the Bypass I. Here we assume the SB access is completed in the 
Decode/Dependence and the Rename stages. The Bypass II denotes normal store-load 
forwarding. An SB miss may get the data from an early SB miss for the same L1 cache line, or a 
successful SB access may be delayed until intervening store dependence is cleared. Such 
bypasses, not shown in the figure, could be from the Schedule stage all the way to the Memory 
stage.  

The proposed SB can be integrated in the baseline microarchitecture as shown in Figure 7. In 
the Decode/Dependence and the Rename stages of the baseline design, a load is decoded, the 
signature is formed, and the SB is accessed. Meanwhile, a search through the LSQ for memory 
dependences with early stores is carried out. If store-load forwarding is found based on matching 
load signature with an early store without any intervening store in between, the SB is bypassed 
and the stored data from the LSQ satisfies the load. Similarly, if the requested data is found in the 
SB and there is no intervening store, the load will jump to the Writeback stage to trigger 

Dec/Dep Rename Schedule Register Execute Writeback CommitI-Fetch Memory

Bypass I

Bypass IIAccess SB, Achieve Zero-Cycle Load

Figure 6.  The Pipeline Stages and Bypassing 
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dependent instructions. 
A load is moved to the Schedule stage when the load misses the SB without store-load 

forwarding, or an uncertainty of memory dependence exists. The load moves on with fetching the 
base register (the Register stage), and generating the memory address (the Execute stage). After 
resolving memory dependences, the data may be obtained from the LSQ through forwarding. In 
cases of memory dependence free, the load may catch the data found during an early SB access, 
or access the L1 cache normally. A load may also wait in the LSQ for an early miss to the same 
L1 cache line with the same or different signature. 

At the Writeback stage, the SB is filled with the target L1 cache line and the directory is 

tag

tag

I-Fetch

Instruction Fetch Queue (IFQ)

Signature Formation

RUU / LSQ

Register / Memory
Scheduler

Addr. Generation
(Integer Unit)

Other Functions
(Function Units)

Data Forwarding
(LSQ)

Data Access
(L1 Cache)

Access SB

data

data

Bypass SB,
Forwarding
from LSQ

Commit

I-Fetch Stage

Decode  /  Issue Packet
Dependences

LSQ

Decoded Microps

Rename to RUU

Rename Stage

Decode Stage

Backend Stages

LSQ

 

Figure 7.  Pipeline Microarchitecture with an Integrated SB 
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updated in response to the SB load miss. A backward invalidation to the SB is performed upon a 
synonym hit, or a replacement of a L1 cache line. Finally, at the Commit stage, stores will lookup 
both the SB and the L1 cache. The SB and the L1 cache are updated accordingly. 

4.  Performance Evaluation 

 
Performance evaluations of the proposed SB are carried out on a modified out-of-order 
SimpleScalar model [4] as described in Section 3.4. This Alpha 21264-like processor is capable 
of issuing 8 instructions per cycle. Table 1 summarizes simulation parameters. Note that we 
assume the SB or a small L0 has 4 ports with a single-port L1. For the baseline model, a 4-port 
L1 is simulated. Nine integer programs, Bzip, Gap, Gcc, Gzip, Mcf, Parser, Twolf, Vpr, Vortex, 
and three floating-point programs, Art, Equake, Mesa from SPEC2000 are chosen for our studies. 
Due to high L2 misses for Art, we quadruple the L2 size only in Art simulation. A version 2.7.2.3 
ssbig-na-sstrix-gcc compiler with option: (funroll-loops -O2) generates the binary codes. With the 
optimization level “-O2”, register allocations based on graph coloring techniques are applied. For 
each workload, we skip certain instructions based on studies done in [22], and then collect 
statistics from the next 200 million instructions. 

The out-of-order SimpleScalar pipeline is a functional-driven timing simulation model [4]. 
For studying the SB, we add value checking in the timing model. The actual value is loaded into 
the SB from the simulated memory. The value of loads and stores from functional simulations is 
attached throughout pipeline stages. For loads, the functional value is used to verify the value 
obtained from the SB. For stores, the functional value is used to update the SB after the store is 
committed. 

Several design parameters are considered for the SB. First, we simulate 16-bit, 24-bit, and 32-
bit colors. Their results are very similar. Secondly, preliminary studies show that the option of 
fetching the second L1 cache line to fill the entire SB line, and/or to place the extra-unaligned L1 
data in to the 2nd SB line, slightly improves the SB hit ratios. For design simplicity, we only 
consider to fill a partial SB line and drop the extra L1 data. Thirdly, the L1 topology is fixed at 
64KB, 4-way set-associative, with variable delays from 5 to 10 cycles. We simulate small SBs 
with 4 to 16 lines. The SB access takes 2 cycles as described in Section 3.4. We also verify that a 
3- or 4-cycle SB has virtually the same performance improvement. Lastly, for comparisons, we 

TABLE 1 
SIMULATION PARAMETERS 

 
Fetch/Decode/Issue Width 

Branch Predictor 
RUU/LSQ Size 

SB/L0 Size 
L1 Instruction/Data 

L2 Cache 
Access Latency: 

SB/L0/L1/L2/Mem 
Cache Port  

Integer ALU: Add/Multiply 

 
8 

Bimodel, 8K-entry, 8-way BTB 
64 / 32 

4 to 16 64-byte line 
64KB, 4-way, 64-byte Line 
2MB, 4-way, 64-byte Line 

 
2 / 2 / 5-10 / 10 / 200 

4  
4 / 2 
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simulate a L0 cache with equivalent size and access time to that of the SB. The SB, L0, L1 and 
L2 all have 64-byte line size. 

4.1.  IPC Improvement 

In Figure 8, the IPCs of the twelve programs and their arithmetic means are plotted. Three 
mechanisms are compared: the original baseline model (Baseline), the pipeline model with an 
integrated SB but without any speculation on memory dependences (SB-nospec), and the pipeline 
model with an integrated SB and a perfect memory dependence predictor (SB-perfect). A perfect 
predictor allows loads to bypass any stores in the LSQ as long as there is no dependence between 
them. In this set of simulations, an 8-entry SB with 2-cycle access is reported and the L1 cache 
latency is 5 cycles. 

On the average, the SB-nospec and the SB-perfect improve about 12% and 13% of IPCs over 
the Baseline. Among the twelve programs, Gap and Gzip have the most improvement about 30% 
and 20% for the SB schemes, while Mcf, Parser, Vortex and Art show poor improvement about 
4-7% over the Baseline. The impact of a perfect predictor is very limited because the intervening 
stores can be resolved quickly. Mcf has low IPCs due to its heavy L2 misses for pointer-chasing 
references [8]. 

To understand the impact on IPCs, we show the distribution of loads based on when and 
where the load data is ready in Figure 9. There are six categories of loads that match the classes in 
Section 3.3:  (1) the data forwarded from a prior store in the LSQ bypassing the SB; (2) the data 
obtained from the SB without intervening stores; (3) the data forwarded from an early SB miss to 
the same signature line or obtained from the SB after memory dependence resolutions of 
intervening stores; (4) the data forwarded from a prior SB miss to the same L1 line with different 
colors; (5) the data from a normal store-load forwarding; and (6) the data from a normal L1 cache 
access. The first four categories are the beneficiaries of the SB. Among the four, the first two can 
obtain the load data in the Rename stage to achieve a zero-cycle load. The category (3) loads may 
get the forwarded data before their addresses are computed, while category (4) loads can only 
receive the forwarded data after the load address becomes available. 
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Figure 8.   Comparison of IPCs:  Baseline without SB; SB without Memory 
Dependence Speculation; and SB with A Perfect Memory Dependence Predictor 
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We can make several observations from the figure. First, using the SB, the normal store-load 
forwarding and the L1 access are reduced to about 30%. In other words, 70% of the loads benefit 
from the proposed scheme to obtain data sooner than accessing it from the L1 data cache. The 
perfect predictor improves the category (2) loads, i.e. the data from the SB in the Rename stage, 
from 9% to 26% due to bypassing the intervening stores. Gzip is most beneficial using a perfect 
predictor with close to 50% of category (2) loads. Detailed analysis indicates that about 52% of 
the loads in Gzip are accessing global variables with rarely any true synonym cases. Gap has 40% 
category (2) loads with 35% global accesses.   

Second, from the SB-nospec, 40% of the loads (category 3) obtain data either from an early 
SB miss to the same SB line (and the same High/Low portion), or from the SB after resolving 
intervening memory dependences. Memory references exhibit strong spatial locality such that 
misses to the same SB line are often close to each other. For example, in Figure 1 and 2, many 
adjacent loads’ signatures differ only by a small quantity of the displacement value. As a result, 
the later loads can receive data directly from an early L1 access. A typical case is found in 
function _word_fwd_aligned() in wordcopy.c of Gcc, where this type of consecutive loads 
represents 54% of the total executed loads. Under the SB-perfect, however, these category (3) 
loads are reduced to 25% because of the reduction of delayed SB accesses. Again, Gzip and Gap 
have high percentage of global accesses with rarely any signature synonym.  

Third, an average 20% of the loads belong to category (4) that indicates many short bursts of 
SB misses to the same L1 cache line with different colors. This situation is encountered because 
of signature synonyms among nearby loads. For example, in accessing array elements, the base 
register is incremented by a small stride for each access. Although the color changes, several 
array accesses may still address the same L1 line and they all potentially miss the SB. This access 
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Store-Load Forwarding; (2) Early SB Data Access;  (3) Forwarding Early SB Miss or Delayed 
SB after Memory Dependence; (4) Forwarding from Prior SB Miss to Same L1 Line; (5) Normal 
Store-Load Forwarding; (6) Normal L1 Cache Access 
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type represents pre-dominated loads we found in function ProdInt() in integer.c of Gap. A similar 
case may also be encountered due to spilled codes with limited registers. Base registers are saved 
and restored to the original base address before the next usage. As a new color is assigned on 
each register update, nearby loads may miss the SB, but address the same L1 line. 

Fourth, in general, the IPC improvements of Figure 8 are consistent with the categories of 
loads in Figure 9. For example, Equake, Gap, Gcc, Gzip, and Twolf have more loads that benefit 
from the SB, while Art, Mcf, Parser, and Vortex have smaller amount of beneficial loads. Note 
that the overall IPC impact is beyond just the pure reduction of load latencies. Improving load 
latency may not help the IPC if the load is not located in the critical execution path [24]. 

4.2.  SB Hit Ratio 

We collect the SB hits/misses during cycle-based simulations with 8-entry, 2-cycle SBs and 5-
cycle L1 access latency. The SB hit/miss is determined at the Decode/Dependence cycle 
regardless an existence of any memory dependence. A load is considered as an SB hit if it hits the 
SB, or it misses the SB, but an early miss to the same SB line (and the same High/Low partition) 
is already in the LSQ.  In Figure 10, we break down SB hits and misses with respect to the base 
register IDs. We separate base registers into 5 groups: $v, $a, $s+$t, $gp, and $sp+$s8. The 
overall SB hit ratio is about 49%. Mcf is dominated by pointer-chasing references using $a as the 
base. A portion of these references access records in linked structures or pass pointers among 
multiple functions. The SB scheme handles these type references reasonably well with about 63% 
hit ratio for $a.  

 
The distribution and accuracy of individual groups are shown in Table 2. As expected, it is 

quite accurate to access global variables and local stack frames. For other loads, the compiler first 
picks $v and $a as temporary registers to hold base addresses for memory accesses. The base 
address is often updated right before the load that may results in a miss from the SB. 
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Figure 10.  SB Hit Ratios Broken Down by Base Registers 
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The average SB hit ratio of 49% matches well against the load distributions among 6 

categories in Figure 9. It has shown that about 50% of the loads benefit from the SB hit (category 
(1) through (3)). 

4.3.  Sensitivity Studies and L0 Cache Comparisons 

The impact of the L1 cache latency is shown in Figure 11. The IPCs for the three caching 
mechanisms are plotted with respect to the L1 cache latency of 5 to 10 cycles. From the Baseline, 
each cycle reduction on L1 cache access latency improves the IPC by 3.5% (slightly lower than 
the original SimpleScalar pipeline). The performance benefit of the SB goes up with the L1 cache 
latency as we expected. The IPC improvements for the SB-nospec are ranging between 12-16% 
for 5 to 10 L1 cache latency cycles. For the SB-perfect, the improvements are about 13-17% over 
the simulated baseline model.  

To prove the key advantage of early SB accesses, we also simulated a L0 cache with 
equivalent size (8 lines) and access time to that of the SB. As shown in Figure 11, the SB out-
performs the L0 by 6-10% without a perfect memory dependence predictor. L0 can only be 
accessed after the address is computed. Therefore, with a 2-cycle access L0, a 3-cycle latency is 
imposed to the dependent instruction. Furthermore, unlike the SB, L0 miss causes extra delay to 
access the L1 cache. 

TABLE 2 
DISTRIBUTION AND SB HIT RATIOS ACCORDING TO BASE REGISTER GROUPS 

 

Base Regester $v $a $s+$t $gp $sp+$s8 

Distribuation (%) 26.2 28.6 11.1 18.2 15.9 

SB Hit Ratio (%) 14.1 48.6 51.4 79.8 73.1 
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Figure 11.  Average IPC for Various L1 Cache Latencies 
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We simulate small SB and L0 sizes with 4, 8, 12, and 16 lines. We also simulate fast and slow 
SB, L0 and L1 caches. For fast caches, we assume 2-cycle SB/L0 and a 5-cycle L1, while for 
slow caches, we assume 3-cycle SB/L0 and an 8-cycle L1. The results in Figure 12 suggest that 
the SB size plays a very minor role in improving the IPC. Basically, the working set between base 
register updates is small with strong spatial locality. Although larger SB can keep the data longer, 
frequent updates of base registers wipe out the correlated data. L0 caches, on the other hand, 
show more IPC improvement with bigger size due to higher L0 hit ratios. However, the SB still 
shows superior performance with 1KB size. L0 demonstrates negative IPC improvement with 4 
cache lines due to the high miss ratio and additional L1 access delays. 

As expected, the SB is more beneficial with slower access speeds since both 2- and 3-cycle 
SB achieve zero-cycle loads. For L0 caches, it also shows more advantage with slow speeds 
because of the slower L1 with longer latency. 

Our simulations also show that the overall performance is insensitive to the color size. 
Therefore, instead of using separate coloring hardware, it is possible to use the renamed register 
ID from the register renamed table to provide unique colors. However, to reduce frequent SB 
flushes, it is necessary to search and invalidate the line in the SB along with any outstanding 
request using the old physical register ID whenever the register is reused.  

4.4.  Handling Constant Increment of Base Registers  

A base register is often incremented or decremented by a small constant value in a loop-type 
program construct. The updated base registers are used to access array variables or structure 
records in the next loop iteration. Unfortunately, the update of a base register changes its color 
and discontinues the signature correlation among loop iterations. After the base register is 
updated, the next load is always a miss in accessing the SB due to the newly assigned color. 
However, such an access may often target the same L1 cache line as the previous load before the 
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Figure 12.  IPC Improvement for Various SB/L0 Size;   
                  Fast:  SB/L0: 2 cycles, L1: 5 cycles  
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base register is incremented and causes a synonym hit. 
The proposed coloring mechanism (Figure 3) can be extended to handle small constant 

increment/decrement of a register without assigning a new color to prolong the signature 
correlations. The basic design of the extended coloring scheme along with the signature formation 
is illustrated in Figure 13. A separate offset field is attached to the current color of each register 
and is used to adjust the displacement value when a signature is formed.  

A constant increment of a register can be detected when an Addi instruction is decoded with 
the same source and destination register. Instead of assigning a new color to the destination 
register, the increment value of ‘4’  is added to the offset value. When the signature of a load is 
formed, the displacement value in the signature is equal to the original displacement of the load 
plus the offset value from the corresponding entry in the current color table. Note that a new color 
must be assigned whenever an overflow or an underflow is encountered in computing the new 
offset or the displacement. The offset is always reset when a new color is assigned.  

The extended coloring scheme with the augmented offset improves the SB hit ratios as 
reported in Figure 14. The average hit ratio improves from 49% to 57%. Bzip, Gap and Art 
benefit the most due to heavy constant increment of base registers. However, the IPC 
improvement of the extended scheme is not as impressive. The range of IPC improvements from 
0% to 5% has been observed with an average of a little over 1%. Careful studying the results has 
found that the miss due to the base register increment is often executed closely with the previous 
miss before the base register is incremented. These adjacent misses are likely to target the same 
L1 cache line when the increment value is small. As a result, the current SB miss may get the 
forwarded data from the previous miss to reduce the SB miss penalty. 

 

Load    R2, 100 (R1)

DisplacementColor
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Addi     R1, R1, #4

+

OffsetColor
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Figure 13.   Extended Coloring Scheme and Signature Formation 
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Figure 14.   Improvement of SB Hit Ratios with Extended Coloring Scheme 

5.  Applicability on Intel’s X86 Architecture  

All discussions so far are based on the SimpleScalar instruction set. In this section, we will 
describe qualitatively integrations of an SB under the Intel’s x86 instruction set architecture [12].  

5.1.  Stack Operations:  

The functions of the stack, such as saving/restoring register content, passing parameters, 
providing work space for local and temporary variables, etc. are generally the same on both 
SimpleScalar and x86 architectures. A runtime stack is managed directly by the CPU under the 
x86 architecture. The ESP register holds a 32-bit offset into some location on the stack. Usually, 
the ESP register is indirectly modified by instructions such as CALL, RET, PUSH and POP. This 
indirect update of the ESP register is different than the stack pointer ($sp) manipulations in 
SimpleScalar. The stack pointer in SimpleScalar is added or subtracted with a constant value to 
reserve proper space on the stack (Figure 1). The correct displacement value is used in 
conjunction with the base address in the stack pointer to address the reserved stack space.  

Since the content of the ESP is modified whenever CALL, RET, PUSH or POP is executed, a 
new color must be assigned to the ESP. This is undesirable as the signature correlation is broken 
upon the execution of these instructions. However, instead of a new color, a constant 
increment/decrement of registers can be handled by augmenting an offset to the current color of 
the respective register. The offset is used to adjust the displacement value when the signature is 
formed as described in Section 4.4.  

Stack space can also be created for local or temporary variables under the x86 architecture. 
To reserve stack space, the ESP register is incremented/decremented properly. A correct 
displacement value is used to provide the offset from the basis address in the ESP to access the 
local variables. The signature correlation and spatial locality for local variables are exploited the 
same way as that in SimpleScalar. 
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5.2.  Other Memory Operations 

The MOV instruction in x86 moves the data between registers and memory. Besides the 
base+displacement address mode, x86 allows a full memory address mode. In the full-address 
mode, the signature is formed using the entire memory address directly from the encoding bits of 
the MOV instruction. However, it is necessary to distinguish the full-address signature from the 
signature formed by the coloring mechanism to preserve the uniqueness of the signature. One 
simple solution is to add a single address-mode bit to the signature to make the distinction of the 
two modes. For the base+displacement addressing mode, the same coloring technique as that in 
SimpleScalar can be applied to form the signature. 

Another source of complications in x86 comes from those ALU instructions with a memory 
source operand. Such instructions involve a memory load along with an ALU operation. In order 
to take the advantage of the SB, this type of instructions is treated like a load after the decode 
stage. The signature is formed and the SB is accessed to achieve a zero-cycle load. 

The INC and DEC instructions add one or subtract one respectively from a single operand. For a 
register operand, the color of the register can stay the same as how the PUSH and the POP instructions are 
handled to prolong the signature correlation. 

6.  Related Work 

There have been several attempts to minimize the cache latency penalty by providing a zero-cycle 
load, i.e. the load and its dependent instructions can be fetched and issued simultaneously. An 
aggressive approach is to predict and speculate the load value [15],[16],[26],[23],[25],[11],[5], or the 
load address [9],[10],[7],[2] in early stages of the processor pipeline to issue load dependents without 
any delay. Both load value and load address predictions generally suffer low accuracy. For address 
predictions, a lengthy cache access is still required which may delay load dependents even if the 
predicted load address is correct. 

Memory renaming techniques establish dynamic dependence correlations between stores and 
loads [25]. A separate storage element called a value file is used to save the correlated data. When a 
memory load instruction is fetched, an indirect access to the value file based on the PC of the load can 
retrieve the data without going through the lengthy cache access. A similar idea has been use to exploit 
store-load [18] and load-load [19] correlations. The PC of the load can indirectly access a small 
synonym file, which keeps the correlated data. Another method of capturing store/load correlations 
has been proposed recently [17].  Instead of building dynamic dependence correlations, a symbolic 
cache is used to capture syntax correlations based on the encoding bits from stores and loads. 

All above methods are speculative in nature. The speculative load value must be verified against 
the value obtained from a normal cache access with penalties for mis-predictions. Recently, another 
technique for early load address resolution was proposed [3]. Certain types of memory loads, such as 
stack accesses, global constants, or stride-based memory accesses, have regular increment/decrement 
address patterns. By tracking base registers for this type of loads, register updates can be performed at 
the decode stage. As a result, address generations and cache accesses for dependent loads can start 
earlier. Although non-speculative, this approach still needs lengthy cache accesses. 

A small level-0 data cache (L0) [27], a different form of small buffer [13], or a L0 only for critical 
loads [21] helps to reduce the load latency. However, since access to the L0 requires going through 
normal pipeline stages to decode and generate addresses, it usually cannot achieve 0-cycle loads.  

The proposed signature buffer has several advantages over existing cache latency hiding methods. 
First, different from the symbolic cache, the SB is non-speculative. The data obtained from the SB 
without intervening stores is always correct. Second, all loads can access the data from the SB without 
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any restriction on the type of the loads or certain special base registers. Third, unlike the address 
prediction or the register-tracking scheme, loads through the SB can bypass the address generation and 
cache access completely. Fourth, unlike the memory renaming technique, where the store/load 
correlation is established dynamically by the hardware, the store/load correlation is established from 
the instruction encoding bits to simplify hardware requirement. Finally, the SB uses line-based 
granularity to capture the spatial locality among memory references. 

7.  Conclusion 

A non-conventional signature buffer, which is addressed by the signature of store/load 
instructions, is introduced. A memory signature using the color of the base register and the 
displacement can be quickly formed to enable data accesses through the SB in early processor 
pipeline stages. A color of a base register is used to differentiate contents of the same base 
register. A new color is assigned whenever the respective register is updated. Therefore, when two 
memory requests have the same memory signature, they address to the same memory location. 
The load penalty through regular caches can thus be eliminated when the requested data is 
obtained from the SB. Performance evaluation of selected SPEC programs has demonstrated that 
the proposed method can successfully improve the latency for about 70% of the loads. On an 
Alpha 21264-like processor model, these early loads using the SB can translate to about 12-17% 
of IPC improvement. 
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