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Abstract

Data communications between producer instructiond eonsumer instructions through
memory incur extra delays that degrade processtorpgance. In this paper, we introduce a new
storage media with a novel addressing mechanismvtid address calculations. Instead of a
memory address, each load and store is assigngghatge for accessing the new storage. A
signature consists of the color of the base regatang with its displacement value. To represent
distinct register content, a unique color is assijto a register whenever the register is updated.
When two memory instructions have the same sigeattirey address to the same memory
location. This memory signature can be formed earlghe processor pipeline. For fast data
communication, a small Signature Buffer, addresgsethe memory signature, can be established
to permit stores and loads bypassing normal metienarchy. Performance evaluations based on
an Alpha 21264-like pipeline using SPEC2000 bencksahow that an IPC (Instruction-Per-
Cycle) improvement of 12-17% is possible using alsBrentry signature buffer.

1. Introduction

Program execution obeys a sequence of instructions that operateadiection of data. Data
communication among instructions usually goes through storagesati@tintermediate values
from a producer instruction for future consumer instructions. fjypes of storages, registers and
memory, are available in a processor. A small number of aothite registers can supply data for
operations seamlessly. Memory, on the other hand, is large and stowwvithr caches that enable
fast accesses for recently used data. Due to the dispariipeeds, modern processors permit
instructions to only directly operate on data from registers, aadoads and stores to move the
data between memory and registers. Therefore, data communigat@rg instructions may go
through an indirect pathproducer - store - load - consumer.

In spite of mapping as many program locations to limitedsteg as possible by the
compiler, it is inevitable to use memory for data communicaboe to a load often encountered
right before the consumer needs for efficient usage of teegisand its inherent delays in
generating the address and accessing large storages, lcaglsvafotheir dependent instructions
are likely located on the program’s critical path [24]. Thefggmance penalty of load latency
will worsen in future processors. As the feature size cordirtoeshrink and clock speed
approaches 10 GHz, it is estimated that the access timé4¥ B first-level cache (L1) will take
three to seven cycles according to different clock scaliopfg using a 35nm technology [1].
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Simulation studies show that each additional cycle in aitge$ise L1 data cache degrades the
overall IPC by about 3.5% on an Alpha 21264-like pipeline running a set of SPEC2000 grogram

To achieve azero-cycleload, i.e. the load and its dependent instructions can be fetched,
dispatched and executed at the same time; we introduce a&tomge structure that can be
accessed in early pipeline stages [20]. The new stdragea very small physical structure to
enable fast access time. In addition, it uses a novel addressttganism to avoid any address
calculation. Each load and store usesignature for accessing the new storage. A signature
consists of theolor of the base register along with ttisplacementalue. Each color represents
a unique instance of the base register. A new color is assigned whireegentent of the register
is updated. When two memory instructions have the same cagratidress memory locations
with the same base address. In this case, the displacerhentuaectly identifies the data item
with respect to the base address. A snfafinature Buffer (SBaddressed by the memory
signature can be established to provide data for memorytigmsmon-speculativelyAccessing
the SB is initiated early in the pipeline after a memastruction is fetched and decoded since
the signature can be formed directly from the encoding bits of the instraotien

Memory dependences arorrelations of store-load or load-load are preserved with
signatures. This property exists in many program constructs @& accessing global and local
variables, saving/restoring registers during procedure/functiltsy ceferencing structure records
using pointers in linked data structures, or accessing armayeats in loop iterations.
Performance evaluations based on the selected SPEC2000 berschomarikg on an Alpha
21264-like processor model show that 70% of the loads can bewoefitaf small 8-entry SB to
reduce access latency. This latency reduction translatelsoist 12-17% IPC (Instruction-Per-
Cycle) improvement.

The remaining paper is organized as follows. The motivationsnamariant observations for
the proposed method will be described in section 2. This is followelisbyssions of design and
related issues for establishing the SB in Section 3. Itidde4, performance evaluations of the
IPC improvement as well as the SB hit ratios are givewver@é design parameters and
alternatives for the SB are also evaluated. In addition xtangon of the coloring scheme to
handle constant increment/decrement of base registers willeberibed and evaluated. The
applicability of the SB on Intel’s x86 instruction set architectuitebe discussed in Section 5. A
few related works on hiding cache latency will be given in Section 6. Finakyio® 7 concludes
the paper.

2. Memory Reference Correlations

Store-load and load-load memory dependences can be correlatelyf Oydbe signature if they
use the same base register with the same displacenheatagalong as the base registers have an
identical content (i.e. the same color). Memory references ekhibit strong spatial locality
using the signature as nearby memory references oftem diffg by a small quantity of the
displacement value. In this section, we provide two programnxaggles from SPEC2000
integer programs to describe qualitatively the existence of such storeatbémhd-loadsignature
correlationsandsignature reference localitin real programs. In Figure 1, an example function
copy_disjuncfrom Parser is given. This function is invoked many tinoglsuild a new copy of a
disjunct list. The second exampbsWis extracted from Bzip (Figure 2). This function is also
invoked multiple times to perform bit-stream I/Os. The stoeefl signature correlation and
reference locality can be observed in several program constructs.
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Di sjunct * copy_disjunct(Disjunct * d) {
Di sjunct * dil;
if (d == NULL) return NULL
dl = (Disjunct *) xalloc(sizeof(Disjunct))
*dl = *d,;
dl->next = NULL;
dl->left = copy_connectors(d->left)
dl->right = copy_connectors(d->right)
return dil;

copy_disjunct:
addiu $sp_$sp, -32
ow $51§§§§§§§§§
addu $s1, . $a
sSw $ra
sw $som
beq $s1, $0, <copy_di sjunct >
addi u $ao0, $0, 20

j al <xal l oc>

addu $s0, $0, $vO

I w $v0) 0($s1) Q

lw  $vi| 4($s1) AR

| w $a0) 8($s1) Regi ster save/
I w $all 12($s1) restore
swW $v0) 0($s0)

sw  $vi| 4($s0) ]

Sw $a0), 8($s0) Access | i nked
sw $all 12($s0) records

I w $v0| 16($s1)

sw $v0| 16( $s0)

sw $0,|0($s0)

I w $a0| 12($s1)

j al <copy_connectors>

| w $s1

I w $so§k

addiu $sp, $sp, 32
jr $ra

Figure 1. Example | — Source and Assembly Codes of Furatdjmn disjuncfrom Parser

Access Records in Linked Data StructuresiAs shown in Figure 1, the pointeds d1 are
used to copy and construct a new node in the linked structure. Diffex@rds (also pointers in
this case) in each node of the old and the new linked stracmeeaccessed using pointérsl
In the assembly code, the two pointers are loaded in register$sfis@nd are used as the base
registers to access these variations of records withl shsplacement values. The signature
correlation and reference locality among these memory accessesaalg admonstrated.

Register Save and Restore in Functionsin example |, strong spatial locality exists when
restoring register contents in function copy_disjunct. In addition,-Biacksignature correlations
exist with matched base register $sp and displacement valgaorg and restoring register
contents without intervening function calls. The invocationgadibc andcopy_connectorsnay
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change the color of the $sp, but the original content of the $sptmed after returning from the
function calls to address caller’s stack frame.

Access Array Variables: Similar store/load correlations are also observed in acceasiay
data structures in other program code. For example, intensiag arcesses are observed in
several functions, such agvord_fwd_aligned()in wordcopy.cin Gec of SPEC2000. Nearby
references to the same or different elements of the samenatinahe same base address provide
signature correlations of stores and loads.

INLINE void bsW( Int32 n, Unt32 v )

{ #define bsNEEDW nz)

bsNEEDW ( n );
bsBuff |= (v << (32 - bsLive - n));
bsLive += n;

while (bsLive >= 8) {
spec_putc (
(UChar) (bsBuff >> 24),

bsStream ) ;
(a) bsBuf f <<= 8;
bsLive -= 8;
bsw Iw $vO0, N byt esQut ++:
addi u $sp, $sp, - 32 }
sw $s0, 16( $sp) }
addu $s0, $0, $a0
sw $s1, 20( $sp)
addu $s1, $0, $al
sw $ra, 24( $sp)
Slti V0 $v0 8 Cal l er (SendMrFVal ues) of bsW
bne $v0, $0, <L2>
L1: | bu $a0, RISy, gl
I'w $al, \W\, I bu $v0, 0O($sl)
j al <spet_putcs> 000
Lw 0, | bu $v0, 0($vO0)
| w SV, NRRdmNNNY e
' I w $al, O0(%$vl)
Iw $ao0, jal <bsWe
beq $v1, $0, <L1> | bu $vi, O0($sl)
L2: addi u $vO0, $0, 32 N """
I s20, NSRRI
subu $v0, $v0, $sO (c)
I w $vl, RGN J q
AT N SSSRAN IR
shiv $v0, $s1, $v0 Access gl obal variables
or $vi, $vi, $v0
addu $a0, $a0, $s0 I:I
sw $vi,
SW $a0, Call ee save/restore
I'w $ra, 241 5sp)
| w $s1, 20( $sp)
I w $s0, 16( $sp)
addi u $sp, $sp, 32
jr $ra
(b)

Figure 2. Example Il Source and Assembly Codes of Function bsW from Bzip. (a) <
Code; (b) Assembly Code; (c) Caller of bswW

Access Global Variables: As shown in Figure 2, three global variablesBuff, bsLiveand
bytesOutare accessed when the functios\W is invoked. Due to the limited registers, these
variables are loaded/stored multiple times based on the gkbal pointer $gp with a constant
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base address. Obviously, the access of global variables texhith signature correlations and
spatial locality.

Access Local Variables: In thebsW the callee-saved registers $s0 and $s1 are freed up for
local usages to avoid saving parametera ahdv from registers $a0 and $al to the local stack
frame and retrieving them later for computations. Howewverfunctions that involve more
complex computations and/or more temporary local variablesnigviable to increase the local
stack accesses using the stack pointer $sp and/or the framea gsBitas base registers. Such
accesses to the small stack frame usually display signaturiatione and spatial locality.

General Save/Restore Base Registersthere is evidence that even if the base register has
been updated between two memory accesses, the content of tiedistee may stay the same.

A base register may be freed up for other usages and the obigswladdress is restored before
the next memory reference. In Figure 2, we also include a Ipassambly code from a caller
SendMTFValuesf thebsW In this caller, $s1 is used as a base register befdiregctde bsW
After returning from théosW $s1 is restored and continues to be used as a base register.

Passing Pointers among Multiple Functions:We also observe in other programs, e.g. Mcf,
that register class $a is sometimes used to pass pcamensg several levels of function calls.
The pointer in $a is used as the base register in severgiohsevithout any save/restore the
content of $a. As a result, the same color for $a is maitaiomss multiple functions to keep
the signature correlation alive.

3. Establishing A Signature Buffer

Load R2,100 (R1)

Ro|
Ry Signature
R2]
Displacement
R3 I Color [ P l
l
Color Register ‘
Y
Incrementer
Current Color
Table (CCT)

Signature Buffer (SB)

Figure 3. Memory Signature and Signature Buffer

In Figure 3, a load is used to illustrate the basic desigheoBignature buffer (SBBesides a
small, fully-associative SB, correct signatures for mennasjructions can be established using a
Color Register (CR) and a Current Color Table (CCT). The CR kbepsext available color and
the CCT records the current color of each register. Initiach CCT entry is set to the
corresponding ID (from 0 to 31) of each register, while the contfe@R is set to 32 (assuming
32 registers). When a load is decoded in-order, the current coltwe dfase register (R1) is
fetched from the CCT. The color is concatenated with the desplesst value from the encoding
bits of the load to form the signature. Meanwhile, the new @flthre destination register (R2) is
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updated from the CR and the CR is incremented afterwards. Thisalewassignment takes
place for all instructions that involve a register update. Taamiee correct data access, all
assigned colors along with the SB are flushed when the lcatoreached its maximum value and
is wrapped around to the initial value. Essentially, a bagistee is renamed to a new color upon
an update to the register. When two memory moves have the sémetley always have the
same base address. This coloring technique conservativgggsaasunique color to represent the
register content without accessing the register file to avoid ahylstato data dependent on base
register updates.

The signature buffer is always accessed in-order aftesigmature is formed. When the
signature of a load matches the signature of a line in Byettf® data can be obtainedn-
speculativelyfrom the SB. This is similar to a virtually addressed caleh that a match of the
virtual address guarantees the correct data found in the [iciéne SB can be thought as a
virtual cache using the signature as the virtual addrésse $he SB is accessed right after the
load is decoded, it is conceivable that load dependents can ditohmx and issued without any
delay. Several design issues of the SB will be discussed in subsequsetisois.

3.1. Data Alignment

The low-order bits in the signature, i.e. the offset bits withsigaature line, may not be the same
as the offset bits in the real memory address. In orderfioiethe spatial reference locality, the
cache line fetched from the first-level cache (L1) needsetrearranged in the SB to align with
the memory signature. The basic alignment algorithm worksllasvs. When a memory request
misses the SB, the target cache line is fetched. The tagdivord is placed in the SB according
to offset bits of the signature. For example, assume thergight units in a cache line as shown
in Figure 4. The signature offset of the target unit is 001 the offset of the real address is 100.
In this case, the target data 100 is loaded into unit 001 in thar@Bremaining units are loaded
according to their relative position to the target unit. E&Bhline may contain a part of two
consecutive L1 lines. We refer these two parts asliple and theLow partitions. In the example
in Figure 4, the partial SB line fill is located in thew partition of the SB line.

Unfilled Data SB Line (partial)

111 | 110 | 101 | 100 | 011 | 010 | 001 | OOCO

f Alignment

111 | 110 | 101 | 100 | 011 | 010 | OO1 | OOO

L1 Cache Line Extra Data

Figure 4. Data Alignment in Signature Buffer

Due to the alignment, there are two options to fill an SB line.stitséghtforward option is to
fill only a partial SB line and drop the extra data from thgetaL 1 line. Other options include
fetching the second L1 cache line to fill the entire SB, laral/or to place the extra-unaligned L1
data into the 2nd SB line to further benefit spatial locality.

3.2. Handling Signature Synonym
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One essential issue in designing the SB is to handle the synonynmofyr&ignatures when two
distinct signatures are mapped to the same memory addresssyflonym problem has some
similarity with that in virtual caches. In addition to thensiture tag, the corresponding L1
address tag is also saved in the SB directory. After theomyeaadress is generated upon an SB
miss, a match through L1 address tags in the SB can identifsigmgture synonym. A synonym
hit occurs if the line is located in the SB under a signatutte avdifferent color. In this case, the
line is invalidated from the old and moved to the new locationserGikat the proposed SB is
fully-associative with small number of lines, the SB synonym sanply be managed by
snooping the SB on every replacement. Virtual caches with setiaBve design require extra
hardware to resolve synonyms.

However, signature synonym is complicated by the fact that égohtere line may be
aligned to have a portion of two consecutive L1 cache lineg @ast be taken to distinguish a
synonym hit and to invalidate the line from two possible SB lonatiThe detailed procedure is
described as we walk through the following example.

SB Directory SB Data Array
SB tag L1 tag| Valid Bound
A C V-V 101
B D -V 101
L1 Tag Array L1 Data Array // / AN
Tag AN
N\
N\
c Y
000
D
Reguests (Signature): A-001 A-101 B-010 X-000
—  —  —
(Real Address): C-100 D-000 D-101 D-000

Figure 5. Tag Arrays and Data Alignment between SB and L1 Cache
Consecutive Rguests; A, B, X Are Signature Lines; C, D Are L1 Cache L
Three Binary Bits Are Target Unit; “Bound” is Boundary of High / Lowti#ans

In Figure 5, the contents of the SB along with the data alignbeween the SB and the L1
cache lines are illustrated. The SB directory recordssitpeature tag, the L1 address tag, the
validity bits, and the boundary of High and Low partitions. An SBshitlentified when the tag
matches and the target High/Low patrtition is valid. The boundaryeopartition determines the
High/Low partition. Recall that due to the data alignment, thgh#iow partitions indicate two
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data regions from two L1 cache lines. These two lines musbieecutive because each L1 line
cannot exist in the SB with two different colors (i.e. a synonyra)ca$erefore, only a single L1
address tag is recorded in the SB directory. Note thatrglisity of address comparisons, two
L1 tags may be maintained for each signature line in the small SB.

Assume that three consecutive memory requests with sigeafs@01, A-101, and B-010
are issued, where the binary bits represents the target unit in eacbrsigina. All three requests
have an identical color, and A, B are two consecutive signdines. These requests are mapped
to the corresponding L1 lines: C-100, D-000, and D-101 in the L1 cadtexe C and D are
adjacent lines. Based on the data alignment, the most significant 5 umts Gfdre loaded to the
SB for the first request. A simple 2's compliment subtraatiothe L1 unit ID from the SB unit
ID can determine the High/Low partition and the correct bounéanythe first reques{0,001 -
0,100 = 0,001 + 1,100 = 1,101}he result sign bit ‘1’ indicates the partition is ‘Low’, arnk t
magnitude ‘101’ is the boundary. The L1 address tag, the correspovalidgbit, and the
boundary 101 are recorded in the SB tag array.

The second request is also a miss even though tag A matchaséfmtarget unit 101 is in
the invalid partition. Only the less significant 3 units of LdeliD are loaded to the most
significant 3 units of signature line A. Both valid bits of the High/Low partgiof A are now set.
The third request addresses a different signature line B, ange€ another miss. Again,
according to the alignment, the most significant 5 units of line D areddadbe lower 5 units of
line B in the SB. Next, the fourth request to a signaineeX is issued and misses the SB. This
request is mapped to D in the L1 cache with a different dblam that of A and B. Now, a
synonym hit is detected and D must be invalidated from the SB.ilvatidations are needed,
one on the High partition of A and the other on the Low partition of B.

3.3. Memory Dependence Disambiguation and Data Forwarding

The SB and the L1 cache are updated when stores are committed. To shorteyn deg@ndence
latency, the stored data can be forwarded to dependent loads tiefastore is committed. This
store-load forwarding through the Load Store Queue (LSQ) hasdmgdied to bypass the L1
data cache. The store-load dependence can be resolved based darébe eomparison. This
dependence resolution is more critical with the SB for tweaes First, upon an SB hit, a load
may have to wait for any uncommitted store ahead of the iloghe LSQ. The uncertainty of
memory dependences may hinder the load and degrades the adwedritdgieing data from the
SB. Second, early resolution of store-load forwarding allows bipmgpske SB. Using the
signature instead of the address, certain memory dependamcks pesolved in parallel with the
SB access. Several steps using an expanded LSQ to tallhimmemory dependence delay are
summarized below.

* Early store-load forwarding: When a load has an identical signature with an early store in
the LSQ, and there is no intervening store in between, the igad$es the SB and gets the data
from the early store. An intervening store has a different @idris a potential synonym to the
load.

* Early SB access with memory disambiguationThe SB is accessed after a load is fetched
and decoded. The data obtained from the SB can trigger dependerttimiss without delays if
there is no intervening store ahead of the load in the LSQ.

* Delayed SB accessThe SB is successfully accessed after memory dependsobations
because of an existence of intervening stores

* Forwarding from early SB misses: When consecutive SB misses are to the same SB line,
the later miss gets the forwarded data from the early. Mings forwarding can happen before the
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load address is computed. (This case is considered as a partial) SB hit.

* Handling multiple SB misses to the same L1 line: When multiple SB misses with
different colors to the same L1 line are detected through tlede@rch, later misses are blocked
from accessing the L1 cache and the requested data wilhlvarfled when the first miss data is
available from the L1. (This issynonyntase.)

* Normal store-load forwarding: When a load or a store address is computed, a search
through the LSQ to identify the store-load forwarding is perforthedsame as the normal store-
load forwarding.

For better performance, aggressive early store-load fomgedid speculative use of the SB
data are possible by predicting the existence of memory depmsdesnth the cost of recovery
upon mis-predictions.

3.4. Integrated Pipeline Microarchitecture

The SimpleScalar pipeline is modified and expanded to accommod&ianzerce studies of the
SB [4]. Figure 6 shows the baseline microarchitecture, whighdee in-line with the Alpha
21264 [14]. The dispatch stage in the SimpleScalar pipeline aditigned into a
Decode/Dependen@nd aRenamestages. In th®ecode/Dependensage multiple instructions
are decoded, and dependences among instructions in the decodwidseteare detected. The
decoded instructions (micro-ops) are renamed to reorder biRf¢U) entries at thd&Rename
stage. The original issue/execute stage beconm®shadule a Registerread, and arkExecute
stages to reflect the delays in scheduling, operands fetching, and execution.

Bypass |

I }

I-Fetch —»Dec/Dep —»Rename —»Schedule—»Register—>Execute—>Memory—»Writeback—»Commit

I t

Access SB, Achieve Zero-Cycle Load Bypass ||

Figure 6. The Pipeline Stages and Bypa:

A zero-cycle load can be achieved as long as the load d&adig on or before thRegister
stage. Therefore, even with a 4-cycle SB, the load cartriggdjer the dependents without any
delay. The two fast paths in the figure illustrate advasgagith an integrated SB. A load can
jump to theWritebackstage after thRenamestage on an SB hit or an early store-load forwarding
as indicated by the Bypass |. Here we assume the SB acgses®nipleted in the
Decode/Dependenceand the Rename stages. The Bypass Il denotes normal store-load
forwarding. An SB miss may get the data from an early SB foisthe same L1 cache line, or a
successful SB access may be delayed until intervening st@endknce is cleared. Such
bypasses, not shown in the figure, could be fromStigedulestage all the way to tHdemory
stage.

The proposed SB can be integrated in the baseline micresntting as shown in Figure 7. In
the Decode/Dependencand theRenamestages of the baseline design, a load is decoded, the
signature is formed, and the SB is accessed. Meanwhiggrahsthrough the LSQ for memory
dependences with early stores is carried out. If store-loméifding is found based on matching
load signature with an early store without any interveningestobetween, the SB is bypassed
and the stored data from the LSQ satisfies the load. Simiifiie requested data is found in the
SB and there is no intervening store, the load will jump toWhi#eback stage to trigger
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dependent instructions.
A load is moved to th&chedulestage when the load misses the SB without store-load

‘ I-Fetch ‘

I-Fetch Stage ¢

Instruction Fetch Queue (IFQ)

Decode / Issue Packet Signature Formation

Decode Stage Dependences ¢ +
Decoded Microps ‘ flocess o8 ngvtzfdﬁ%
from LSQ

Q \\\\\\\

\ \\

RUU/ LSQ <
* M kend
Commit Register / Memory Backend Stages
Scheduler
A
\ 4 \ 4 4 \ 4
Addr. Generation Data Forwarding Data Access Other Functions
(Integer Unit) (LSQ) (L1 Cache) (Function Units)
\\\\\\\\\\\
s NN
\ y\
\ ¢ A

Figure 7. Pipeline Microarchitecture with an Integrated SB

forwarding, or an uncertainty of memory dependence exists. The loassron with fetching the
base register (thRegisterstage), and generating the memory addressExeeutestage). After
resolving memory dependences, the data may be obtained from théhids@h forwarding. In
cases of memory dependence free, the load may catch the data fangdaduearly SB access,
or access the L1 cache normally. A load may also wait ih. 86 for an early miss to the same
L1 cache line with the same or different signature.

At the Writebackstage, the SB is filled with the target L1 cache line #meddirectory is

10
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updated in response to the SB load miss. A backward invalidatibe 88 is performed upon a
synonym hit, or a replacement of a L1 cache line. FinallhexCommitstage, stores will lookup
both the SB and the L1 cache. The SB and the L1 cache are updated accordingly

4. Performance Evaluation

TABLE 1
SIMULATION PARAMETERS
Fetch/Decode/lssue Width 8
Branch Predictor Bimodel, 8K-entry, 8-way BTB
RUU/LSQ Size 64 /32
SB/LOSize 4 to 16 64-byte line
L1 Instruction/Data 64KB, 4-way, 64-byte Line
L2 Cache 2MB, 4-way, 64-byte Line
Access Latency:
SB/LO/L1/L2/Mem 2/2/5-10/10/200
Cache Port 4
Integer ALU: Add/Multiply 412

Performance evaluations of the proposed SB are carried out wmwd#ied out-of-order
SimpleScalar model [4] as described in Section 3.4. This Alpha Alk@6@rocessor is capable
of issuing 8 instructions per cycle. Table 1 summarizes siionlggarameters. Note that we
assume the SB or a small LO has 4 ports with a single-port Lih&dyaseline model, a 4-port
L1 is simulated. Nine integer programs, Bzip, Gap, Gcc, Gzip, Makdp, Twolf, Vpr, Vortex,
and three floating-point programs, Art, Equake, Mesa from SPEC28Gthasen for our studies.
Due to high L2 misses for Art, we quadruple the L2 size onirirsimulation. A version 2.7.2.3
ssbhig-na-sstrix-gccompiler with option{funroll-loops -O2)generates the binary codes. With the
optimization level *02’, register allocations based on graph coloring techniques pliedpFor
each workload, we skip certain instructions based on stuttee in [22], and then collect
statistics from the next 200 million instructions.

The out-of-order SimpleScalar pipeline is a functional-driveminigy simulation model [4].
For studying the SB, we add value checking in the timing model.attual value is loaded into
the SB from the simulated memory. The value of loads and dtoresunctional simulations is
attached throughout pipeline stages. For loads, the functional walised to verify the value
obtained from the SB. For stores, the functional value is used tieufite SB after the store is
committed.

Several design parameters are considered for the SB. First, wetsidfiait, 24-bit, and 32-
bit colors. Their results are very similar. Secondly, priglary studies show that the option of
fetching the second L1 cache line to fill the entire SB, laral/or to place the extra-unaligned L1
data in to the 2nd SB line, slightly improves the SB hit rafi@s. design simplicity, we only
consider to fill a partial SB line and drop the extra L1 dakardly, the L1 topology is fixed at
64KB, 4-way set-associative, with variable delays from 5 t@yllles. We simulate small SBs
with 4 to 16 lines. The SB access takes 2 cycles as debanilsection 3.4. We also verify that a
3- or 4-cycle SB has virtually the same performance imprewentastly, for comparisons, we
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simulate a LO cache with equivalent size and access tirtieat of the SB. The SB, LO, L1 and
L2 all have 64-byte line size.

4.1. IPC Improvement

In Figure 8, the IPCs of the twelve programs and their ariibnmeans are plotted. Three
mechanisms are compared: the original baseline m&ele(ing, the pipeline model with an
integrated SB but without any speculation on memory dependesiBasoSpel; and the pipeline
model with an integrated SB and a perfect memory dependence @ré8Btperfect A perfect
predictor allows loads to bypass any stores in the LSQ asabtigere is no dependence between
them. In this set of simulations, an 8-entry SB with 2-cycleess is reported and the L1 cache
latency is 5 cycles.

2.0 m Baseline
1.8 - O SB-nospec | u

0O SB-perfect
1.6

14t -@f - -

12 4

2101

0.8 -
0.6
0.4
0.2 1
0.0 -

iR

NACy
Q O\}Ib' @Q}

<

Figure 8. Comparison of IPCs: Baseline without SB; SB without Memory
Dependence Speculation; and SB with A Perfect Memory Dependencetétredic

On the average, the&B-nospe@and theSB-perfecimprove about 12% and 13% of IPCs over
the Baseline Among the twelve programs, Gap and Gzip have the most improvelyauit 30%
and 20% for the SB schemes, while Mcf, Parser, Vortex and Art pbowimprovement about
4-7% over theBaseline The impact of a perfect predictor is very limited beesath® intervening
stores can be resolved quickly. Mcf has low IPCs due foeissy L2 misses for pointer-chasing
references [8].

To understand the impact on IPCs, we show the distribution of loads dasetlen and
where the load data is ready in Figure 9. There are six categbloegls that match the classes in
Section 3.3: (1) the data forwarded from a prior store in 8@ bhypassing the SB; (2) the data
obtained from the SB without intervening stores; (3) the dataafoled from an early SB miss to
the same signature line or obtained from the SB after nyemependence resolutions of
intervening stores; (4) the data forwarded from a prior 3 o the same L1 line with different
colors; (5) the data from a normal store-load forwarding; 8hthé data from a normal L1 cache
access. The first four categories are the beneficiafitre&SB. Among the four, the first two can
obtain the load data in tleenamestage to achieve a zero-cycle load. The category (8% loay
get the forwarded data before their addresses are computed, cateory (4) loads can only
receive the forwarded data after the load address becomezbée/ail

12
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Early S-L Forwarding B Early SB Access [ Delayed SB Access
Non-signature Forwarding O Normal S-L Forwarding O L1 cache access

Figure 9. Distribution of Loads (Six Categories from Bottom to Top in Each BRy Early
Store-Load Forwarding; (2) Early SB Data Access; (3) Forwarding E&rMiss or Delayed
SB after Memory Dependence; (4) Forwarding from Prior SB Miss te3dnhine; (5) Normal
Store-Load Forwarding; (6) Normal L1 Cache Access

We can make several observations from the figure. First, tsen§B, the normal store-load
forwarding and the L1 access are reduced to about 30%. In other, WO¥®f the loads benefit
from the proposed scheme to obtain data sooner than accessorg the L1 data cache. The
perfect predictor improves the category (2) loads, i.e. thefidatathe SB in thdRenamestage,
from 9% to 26% due to bypassing the intervening stores. Gzip ishansficial using a perfect
predictor with close to 50% of category (2) loads. Deda#iealysis indicates that about 52% of
the loads in Gzip are accessing global variables with rarely any true sycasgs Gap has 40%
category (2) loads with 35% global accesses.

Second, from th&B-nospecd40% of the loads (category 3) obtain data either from an early
SB miss to the same SB line (and the same High/Lowgmrtor from the SB after resolving
intervening memory dependences. Memory references exhibit strotigl $peality such that
misses to the same SB line are often close to each othexx&wiple, in Figure 1 and 2, many
adjacent loads’ signatures differ only by a small quantitthefdisplacement value. As a result,
the later loads can receive data directly from an eatlyatcess. A typical case is found in
function _word_fwd_aligned()in wordcopy.cof Gcc, where this type of consecutive loads
represents 54% of the total executed loads. UndeBSBiperfect however, these category (3)
loads are reduced to 25% because of the reduction of delayett&Ses. Again, Gzip and Gap
have high percentage of global accesses with rarely any signature synonym.

Third, an average 20% of the loads belong to category (4intiaates many short bursts of
SB misses to the same L1 cache line with different coldris. situation is encountered because
of signature synonyms among nearby loads. For example, in accesaynglements, the base
register is incremented by a small stride for each acadghough the color changes, several
array accesses may still address the same L1 line andltipsgentially miss the SB. This access
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type represents pre-dominated loads we found in funBtiodInt() in integer.cof Gap. A similar
case may also be encountered due to spilled codes with liragesders. Base registers are saved
and restored to the original base address before the next Asagenew color is assigned on
each register update, nearby loads may miss the SB, but address tihd fame

Fourth, in general, the IPC improvements of Figure 8 are comisistth the categories of
loads in Figure 9. For example, Equake, Gap, Gcce, Gzip, and Twolfiarecloads that benefit
from the SB, while Art, Mcf, Parser, and Vortex have smallaount of beneficial loads. Note
that the overall IPC impact is beyond just the pure reductidoaof latencies. Improving load
latency may not help the IPC if the load is not located in the criticalige path [24].

4.2. SB Hit Ratio

We collect the SB hits/misses during cycle-based sinousitwith 8-entry, 2-cycle SBs and 5-
cycle L1 access latency. The SB hit/miss is determinedhetDecode/Dependenceycle
regardless an existence of any memory dependence. A load is cetigidean SB hit if it hits the
SB, or it misses the SB, but an early miss to the s@n&8& (and the same High/Low partition)
is already in the LSQ. In Figure 10, we break down SB hidsraisses with respect to the base
register IDs. We separate base registers into 5 groups: $%&s$&t, $gp, and $sp+$s8. The
overall SB hit ratio is about 49%. Mcf is dominated by pointeridga®ferences using $a as the
base. A portion of these references access records in libkeduses or pass pointers among
multiple functions. The SB scheme handles these type refereasesably well with about 63%
hit ratio for $a.
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Figure 10. SB Hit Ratios Broken Down by Base Reqi

The distribution and accuracy of individual groups are shown in Tabs expected, it is
quite accurate to access global variables and local stankdrd-or other loads, the compiler first
picks $v and $a as temporary registers to hold base addfesseemory accesses. The base
address is often updated right before the load that may results in faomigke SB.
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TABLE 2
DISTRIBUTION AND SB HIT RATIOS ACCORDING TOBASE REGISTERGROUPS

Base Regester $v $a P$s+5t $gp  $spH$s8
Distribuation (%) 26.2 28.6 11.1 18.2 15.9
SB Hit Ratio (%) 14.1 48.6 514 79.8 73.1

The average SB hit ratio of 49% matches well against thd ftistributions among 6
categories in Figure 9. It has shown that about 50% of the loadf IfKkeme the SB hit (category
(1) through (3)).

4.3. Sensitivity Studies and LO Cache Comparisons

The impact of the L1 cache latency is shown in Figure 11. Pi@s Ifor the three caching
mechanisms are plotted with respect to the L1 cache laterictodfO cycles. From thBaseline
each cycle reduction on L1 cache access latency improveB@hbyl 3.5% (slightly lower than
the original SimpleScalar pipeline). The performance benefitoEB goes up with the L1 cache
latency as we expected. The IPC improvements foSBmospeare ranging between 12-16%
for 5 to 10 L1 cache latency cycles. For 8&-perfectthe improvements are about 13-17% over
the simulated baseline model.

To prove the key advantage of early SB accesses, wesmsdated a LO cache with
equivalent size (8 lines) and access time to that oS&eAs shown in Figure 11, the SB out-
performs the LO by 6-10% without a perfect memory dependencectaediO can only be
accessed after the address is computed. Therefore, witdy@e2access L0, a 3-cycle latency is
imposed to the dependent instruction. Furthermore, unlike the SB,d0causes extra delay to
access the L1 cache.
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Figure 11. Average IPC for Various L1 Cache Latencies
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We simulate small SB and LO sizes with 4, 8, 12, and 16 lines. Weialslate fast and slow
SB, LO and L1 caches. For fast caches, we assume 2-dgdl@ 8nd a 5-cycle L1, while for
slow caches, we assume 3-cycle SB/LO and an 8-cycle L1. Suksren Figure 12 suggest that
the SB size plays a very minor role in improving the IPC. Basically, tkimg set between base
register updates is small with strong spatial localitthéligh larger SB can keep the data longer,
frequent updates of base registers wipe out the correlatad ldatcaches, on the other hand,
show more IPC improvement with bigger size due to higher LGatids. However, the SB still
shows superior performance with 1KB size. LO demonstrategivedBC improvement with 4
cache lines due to the high miss ratio and additional L1 access delays.

\ B FastL0 O Fast-SB © Slow-L0 @ Slow-SB |

16

R - --------- -

IPC Improvement (%)
(2]
T
|
|
|
T
|

LO/SB Size (Bytes)

Figure 12. IPC Improvement for Various SB/LO Size;
Fast: SB/LO: 2 cycles, L1: 5 cycles
Slow: SB/LO: 3 cycles, L1: 8 cycles

As expected, the SB is more beneficial with slower acspeeds since both 2- and 3-cycle
SB achieve zero-cycle loads. For LO caches, it also shows adwentage with slow speeds
because of the slower L1 with longer latency.

Our simulations also show that the overall performance imsitsgee to the color size.
Therefore, instead of using separate coloring hardware, it ib[@ss use theaenamed register
ID from the register renamed table to provide unique colors. Howeveeduce frequent SB
flushes, it is necessary to search and invalidate the lineeirSB along with any outstanding
request using the old physical register ID whenever the registrsed.

4.4. Handling Constant Increment of Base Registers

A base register is often incremented or decremented byalh somstant value in a loop-type
program construct. The updated base registers are used &% accay variables or structure
records in the next loop iteration. Unfortunately, the update of & fteggster changes its color
and discontinues the signature correlation among loop iterations: &fé base register is
updated, the next load is always a miss in accessing the SB dhe newly assigned color.
However, such an access may often target the same L1 gaelas the previous load before the
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base register is incremented and causes a synonym hit.

The proposed coloring mechanism (Figure 3) can be extended tcelmmdll constant
increment/decrement of a register without assigning a newr d¢ol prolong the signature
correlations. The basic design of the extended coloring scheme along véihrthtre formation
is illustrated in Figure 13. A separaiffsetfield is attached to the current color of each register
and is used to adjust the displacement value when a signature is formed.

Load R2,100 (R1)

Addi R1, R1, #4
—

R1

| Color | Offset |

S
+
A

| Color | Displacement |

Signature

Figure 13. Extended Coloring Scheme and Signature Formation

A constant increment of a register can be detected whéuldirinstruction is decoded with
the same source and destination register. Instead of assigning eoloe to the destination
register, the increment value of ‘6 added to theffsetvalue. When the signature of a load is
formed, thedisplacementalue in the signature is equal to the original displacewietiite load
plus theoffsetvalue from the corresponding entry in the current color taldée that a new color
must be assigned whenever an overflow or an underflow is encedintecomputing the new
offsetor the displacement. Tlodfsetis always reset when a new color is assigned.

The extended coloring scheme with the augmewtféset improves the SB hit ratios as
reported in Figure 14. The average hit ratio improves from 49%/%. Bzip, Gap and Art
benefit the most due to heavy constant increment of base ersgisiowever, the IPC
improvement of the extended scheme is not as impressive. fide o&IPC improvements from
0% to 5% has been observed with an average of a little over d&fuCstudying the results has
found that the miss due to the base register increment iseoféenited closely with the previous
miss before the base register is incremented. These adpissass are likely to target the same
L1 cache line when the increment value is small. As a rabatcurrent SB miss may get the
forwarded data from the previous miss to reduce the SB miss penalty.
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Figure 14. Improvement of SB Hit Ratios with Extended Coloring Scheme

5. Applicability on Intel’'s X86 Architecture

All discussions so far are based on the SimpleScalar instnusét. In this section, we will
describe qualitatively integrations of an SB under the Intel's x8@uicigin set architecture [12].

5.1. Stack Operations:

The functions of the stack, such as saving/restoring registetertt, passing parameters,
providing work space for local and temporary variables, etc. anerglly the same on both
SimpleScalar and x86 architectures. A runtime stack is mdndigectly by the CPU under the
x86 architecture. ThESPregister holds a 32-bit offset into some location on the staskally,
the ESPreqister is indirectly modified by instructions such as CARET, PUSH and POP. This
indirect update of thé&eSP register is different than the stack point&sd manipulations in
SimpleScalar. The stack pointer in SimpleScalar is added aastdat with a constant value to
reserve proper space on the stack (Figure 1). The corrsplackment value is used in
conjunction with the base address in the stack pointer to address thedesack space.

Since the content of tHeSPis modified whenever CALL, RET, PUSH or POP is executed, a
new color must be assigned to 88P. This is undesirable as the signature correlation is broken
upon the execution of these instructions. However, instead of a cobw, a constant
increment/decrement of registers can be handled by augmentofésetio the current color of
the respective register. Tldfsetis used to adjust the displacement value when the signature is
formed as described in Section 4.4.

Stack space can also be created for local or temporaablesiunder the x86 architecture.
To reserve stack space, tHESP register is incremented/decremented properly. A correct
displacement value is used to provide the offset from the hddi®ss in th&ESPto access the
local variables. The signature correlation and spatial lodalitjocal variables are exploited the
same way as that in SimpleScalar.
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5.2. Other Memory Operations

The MOV instruction in x86 moves the data between registers namory. Besides the
base+displacemeraddress mode, x86 allowsfal memory address mode. In the full-address
mode, the signature is formed using the entire memory addresiydfrom the encoding bits of
the MOV instruction. However, it is necessary to distinguiighftill-address signature from the
signature formed by the coloring mechanism to preserve the uespi@h the signature. One
simple solution is to add a singdeldress-modaeit to the signature to make the distinction of the
two modes. For thbase+displacemerdddressing mode, the same coloring technique as that in
SimpleScalar can be applied to form the signature.

Another source of complications in x86 comes from those ALU ingngwith a memory
source operand. Such instructions involve a memory load along with dropération. In order
to take the advantage of the SB, this type of instructieriseated like a load after the decode
stage. The signature is formed and the SB is accessed to achigvecgcte load.

The INC and DEC instructions add one or subtraa oespectively from a single operand. For a
register operand, the color of the register cay ta same as how the PUSH and the POP instructi@ns
handled to prolong the signature correlation.

6. Related Work

There have been several attempts to minimize tbieeckatency penalty by providing a zero-cycle
load, i.e. the load and its dependent instructicens be fetched and issued simultaneously. An
aggressive approach is to predict and speculateddevalue [15],[16],[26],[23],[25],[11],[5], ohe
load address [9],[10],[71,[2] in early stages o throcessor pipeline to issue load dependents wtitho
any delay. Both load value and load address predicgenerally suffer low accuracy. For address
predictions, a lengthy cache access is still requiwhich may delay load dependents even if the
predicted load address is correct.

Memory renaming techniques establish dynamic degerad correlations between stores and
loads [25]. A separate storage element called a \iduis used to save the correlated data. When a
memory load instruction is fetched, an indirect accessetoalue file based on the PC of the load can
retrieve the data without going through the lengthghe access. A similar idea has been use totexplo
store-load [18] and load-load [19] correlationseTPC of the load can indirectly access a small
synonym file, which keeps the correlated data. Aotmethod of capturing store/load correlations
has been proposed recently [17]. Instead of mgldiynamic dependence correlations, a symbolic
cache is used to capture syntax correlations lms#te encoding bits from stores and loads.

All above methods are speculative in nature. Tleewdptive load value must be verified against
the value obtained from a normal cache accesspaitialties for mis-predictions. Recently, another
technique for early load address resolution wapgeed [3]. Certain types of memory loads, such as
stack accesses, global constants, or stride-basetiy accesses, have regular increment/decrement
address patterns. By tracking base registers for thisofypads, register updates can be performed at
the decode stage. As a result, address generatiohsache accesses for dependent loads can start
earlier. Although non-speculative, this approaghrgteds lengthy cache accesses.

A small level-0 data cache (LO) [27], a differentnficof small buffer [13], or a LO only for critical
loads [21] helps to reduce the load latency. Howesmce access to the LO requires going through
normal pipeline stages to decode and generatessgdret usually cannot achieve 0-cycle loads.

The proposed signature buffer has several advaragegxisting cache latency hiding methods.
First, different from the symbolic cache, the SBiis-speculative. The data obtairfeam the SB
without intervening stores is always correct. Secafidbads can access the data from the SB without
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any restriction on the type of the loads or certpecial base registers. Third, unlike the address
prediction or the register-tracking scheme, loadsugh the SB can bypass the address generation and
cache access completely. Fourth, unlike the mememaming technique, where the store/load
correlation is established dynamically by the hanehythe store/load correlation is established from
the instruction encoding bits to simplify hardwaegjuirement. Finally, the SB uses line-based
granularity to capture the spatial locality amoregymory references.

7. Conclusion

A non-conventional signature buffer, which is addressed by theatsigg of store/load
instructions, is introduced. A memory signature using the colah@fbase register and the
displacement can be quickly formed to enable data accessegtitthe SB in early processor
pipeline stages. A color of a base register is used ferglitiate contents of the same base
register. A new color is assigned whenever the respective ragisgtated. Therefore, when two
memory requests have the same memory signature, they atllitegessame memory location.
The load penalty through regular caches can thus be eliminatad tvberequested data is
obtained from the SB. Performance evaluation of selected $RELams has demonstrated that
the proposed method can successfully improve the latency for @b®wtof the loads. On an
Alpha 21264-like processor model, these early loads using therSBaceslate to about 12-17%
of IPC improvement.
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