
Journal of Instruction-Level Parallelism 6 (2004) 1-20 Submitted 6/2004; published 9/2004

©2004 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

A New Address-Free Memory Hierarchy Layer for Zero-Cycle Load

Lu Peng LPENG@CISE.UFL.EDU

Jih-Kwon Peir PEIR@CISE.UFL.EDU

Department of Computer and Information Science and Engineering
University of Florida
Gainesville, Florida 32611

Konrad Lai KONRAD.LAI@INTEL.COM

Microprocessor Research Lab, Intel Corporation
Hillsboro, Oregon 97124

Abstract

Data communications between producer instructions and consumer instructions through
memory incur extra delays that degrade processor performance. In this paper, we introduce a new
storage media with a novel addressing mechanism to avoid address calculations. Instead of a
memory address, each load and store is assigned a signature for accessing the new storage. A
signature consists of the color of the base register along with its displacement value. To represent
distinct register content, a unique color is assigned to a register whenever the register is updated.
When two memory instructions have the same signature, they address to the same memory
location. This memory signature can be formed early in the processor pipeline. For fast data
communication, a small Signature Buffer, addressed by the memory signature, can be established
to permit stores and loads bypassing normal memory hierarchy. Performance evaluations based on
an Alpha 21264-like pipeline using SPEC2000 benchmarks show that an IPC (Instruction-Per-
Cycle) improvement of 12-17% is possible using a small 8-entry signature buffer.

1. Introduction

Program execution obeys a sequence of instructions that operate on a collection of data. Data
communication among instructions usually goes through storages that save intermediate values
from a producer instruction for future consumer instructions. Two types of storages, registers and
memory, are available in a processor. A small number of architecture registers can supply data for
operations seamlessly. Memory, on the other hand, is large and slow, even with caches that enable
fast accesses for recently used data. Due to the disparity of speeds, modern processors permit
instructions to only directly operate on data from registers, and use loads and stores to move the
data between memory and registers. Therefore, data communication among instructions may go
through an indirect path: producer � store � load � consumer.

In spite of mapping as many program locations to limited registers as possible by the
compiler, it is inevitable to use memory for data communication. Due to a load often encountered
right before the consumer needs for efficient usage of registers and its inherent delays in
generating the address and accessing large storages, loads along with their dependent instructions
are likely located on the program’s critical path [24]. The performance penalty of load latency
will worsen in future processors. As the feature size continues to shrink and clock speed
approaches 10 GHz, it is estimated that the access time of a 64KB first-level cache (L1) will take
three to seven cycles according to different clock scaling factors using a 35nm technology [1].

PENG, PEIR & L AI

 2

Simulation studies show that each additional cycle in accessing the L1 data cache degrades the
overall IPC by about 3.5% on an Alpha 21264-like pipeline running a set of SPEC2000 programs.

To achieve a zero-cycle load, i.e. the load and its dependent instructions can be fetched,
dispatched and executed at the same time; we introduce a new storage structure that can be
accessed in early pipeline stages [20]. The new storage has a very small physical structure to
enable fast access time. In addition, it uses a novel addressing mechanism to avoid any address
calculation. Each load and store uses a signature for accessing the new storage. A signature
consists of the color of the base register along with the displacement value. Each color represents
a unique instance of the base register. A new color is assigned whenever the content of the register
is updated. When two memory instructions have the same color, they address memory locations
with the same base address. In this case, the displacement value correctly identifies the data item
with respect to the base address. A small Signature Buffer (SB) addressed by the memory
signature can be established to provide data for memory operations non-speculatively. Accessing
the SB is initiated early in the pipeline after a memory instruction is fetched and decoded since
the signature can be formed directly from the encoding bits of the instruction code.

 Memory dependences or correlations of store-load or load-load are preserved with
signatures. This property exists in many program constructs such as accessing global and local
variables, saving/restoring registers during procedure/function calls, referencing structure records
using pointers in linked data structures, or accessing array elements in loop iterations.
Performance evaluations based on the selected SPEC2000 benchmarks running on an Alpha
21264-like processor model show that 70% of the loads can benefit from a small 8-entry SB to
reduce access latency. This latency reduction translates to about 12-17% IPC (Instruction-Per-
Cycle) improvement.

The remaining paper is organized as follows. The motivations and important observations for
the proposed method will be described in section 2. This is followed by discussions of design and
related issues for establishing the SB in Section 3. In Section 4, performance evaluations of the
IPC improvement as well as the SB hit ratios are given. Several design parameters and
alternatives for the SB are also evaluated. In addition, an extension of the coloring scheme to
handle constant increment/decrement of base registers will be described and evaluated. The
applicability of the SB on Intel’s x86 instruction set architecture will be discussed in Section 5. A
few related works on hiding cache latency will be given in Section 6. Finally, Section 7 concludes
the paper.

2. Memory Reference Correlations

Store-load and load-load memory dependences can be correlated directly by the signature if they
use the same base register with the same displacement value as long as the base registers have an
identical content (i.e. the same color). Memory references also exhibit strong spatial locality
using the signature as nearby memory references often differ only by a small quantity of the
displacement value. In this section, we provide two programming examples from SPEC2000
integer programs to describe qualitatively the existence of such store-load and load-load signature
correlations and signature reference locality in real programs. In Figure 1, an example function
copy_disjunct from Parser is given. This function is invoked many times to build a new copy of a
disjunct list. The second example bsW is extracted from Bzip (Figure 2). This function is also
invoked multiple times to perform bit-stream I/Os. The store/load signature correlation and
reference locality can be observed in several program constructs.

A NEW ADDRESS-FREE MEMORY HIERARCHY LAYER FOR ZERO-CYCLE LOAD

 3

Disjunct * copy_disjunct(Disjunct * d) {
 Disjunct * d1;
 if (d == NULL) return NULL;
 d1 = (Disjunct *) xalloc(sizeof(Disjunct));
 *d1 = *d;
 d1->next = NULL;
 d1->left = copy_connectors(d->left);
 d1->right = copy_connectors(d->right);
 return d1;
}

copy_disjunct:
addiu $sp,$sp,-32
sw $s1,20($sp)
addu $s1,$0,$a0
sw $ra,24($sp)
sw $s0,16($sp)
beq $s1,$0,<copy_disjunct>
addiu $a0,$0,20
jal <xalloc>
addu $s0,$0,$v0
lw $v0,0($s1)
lw $v1,4($s1)
lw $a0,8($s1)
lw $a1,12($s1)
sw $v0,0($s0)
sw $v1,4($s0)
sw $a0,8($s0)
sw $a1,12($s0)
lw $v0,16($s1)
sw $v0,16($s0)
sw $0, 0($s0)
lw $a0,12($s1)
jal <copy_connectors>
......
lw $ra,24($sp)
lw $s1,20($sp)
lw $s0,16($sp)
addiu $sp,$sp,32
jr $ra

Register save/
restore

Access linked
records

 Access Records in Linked Data Structures: As shown in Figure 1, the pointers d, d1 are
used to copy and construct a new node in the linked structure. Different records (also pointers in
this case) in each node of the old and the new linked structures are accessed using pointers d, d1.
In the assembly code, the two pointers are loaded in registers $s0, $s1 and are used as the base
registers to access these variations of records with small displacement values. The signature
correlation and reference locality among these memory accesses are clearly demonstrated.

Register Save and Restore in Functions: In example I, strong spatial locality exists when
restoring register contents in function copy_disjunct. In addition, store-load signature correlations
exist with matched base register $sp and displacement value for saving and restoring register
contents without intervening function calls. The invocations of xalloc and copy_connectors may

 Figure 1. Example I – Source and Assembly Codes of Function copy_disjunct from Parser

PENG, PEIR & L AI

 4

change the color of the $sp, but the original content of the $sp is restored after returning from the
function calls to address caller’s stack frame.

Access Array Variables: Similar store/load correlations are also observed in accessing array
data structures in other program code. For example, intensive array accesses are observed in
several functions, such as _word_fwd_aligned() in wordcopy.c in Gcc of SPEC2000. Nearby
references to the same or different elements of the same array with the same base address provide
signature correlations of stores and loads.

Access Global Variables: As shown in Figure 2, three global variables, bsBuff, bsLive and

bytesOut are accessed when the function bsW is invoked. Due to the limited registers, these
variables are loaded/stored multiple times based on the same global pointer $gp with a constant

#define bsNEEDW(nz)
{
 while (bsLive >= 8) {
 spec_putc (

(UChar)(bsBuff >> 24),
 bsStream);
 bsBuff <<= 8;
 bsLive -= 8;
 bytesOut++;
 }
}

Caller (SendMTFValues) of bsW:

......
lbu $v0, 0($s1)
......
lbu $v0, 0($v0)
......
lw $a1, 0($v1)
jal <bsW>
lbu $v1, 0($s1)
......

(c)

Access global variables

Callee save/restore

INLINE void bsW (Int32 n, UInt32 v)
{
 bsNEEDW (n);
 bsBuff |= (v << (32 - bsLive - n));
 bsLive += n;
}

(a)

bsW: lw $v0,-32124($gp)
 addiu $sp,$sp,-32
 sw $s0,16($sp)
 addu $s0,$0,$a0
 sw $s1,20($sp)
 addu $s1,$0,$a1
 sw $ra,24($sp)
 slti $v0,$v0,8
 bne $v0,$0, <L2>
L1: lbu $a0,-32144($gp)
 lw $a1,-32100($gp)
 jal <spec_putc>
 lw $v0,-32144($gp)
 lw $v1,-32124($gp)
 lw $a0,-32116($gp)

 beq $v1,$0,<L1>
L2: addiu $v0,$0,32
 lw $a0,-32124($gp)
 subu $v0,$v0,$s0
 lw $v1,-32144($gp)
 subu $v0,$v0,$a0
 sllv $v0,$s1,$v0
 or $v1,$v1,$v0
 addu $a0,$a0,$s0
 sw $v1,-32144($gp)
 sw $a0,-32124($gp)
 lw $ra,24($sp)
 lw $s1,20($sp)
 lw $s0,16($sp)
 addiu $sp,$sp,32
 jr $ra

(b)

Figure 2. Example II - Source and Assembly Codes of Function bsW from Bzip. (a) Source
Code; (b) Assembly Code; (c) Caller of bsW

A NEW ADDRESS-FREE MEMORY HIERARCHY LAYER FOR ZERO-CYCLE LOAD

 5

base address. Obviously, the access of global variables exhibits both signature correlations and
spatial locality.

Access Local Variables: In the bsW, the callee-saved registers $s0 and $s1 are freed up for
local usages to avoid saving parameters of n and v from registers $a0 and $a1 to the local stack
frame and retrieving them later for computations. However, in functions that involve more
complex computations and/or more temporary local variables, it is inevitable to increase the local
stack accesses using the stack pointer $sp and/or the frame pointer $s8 as base registers. Such
accesses to the small stack frame usually display signature correlations and spatial locality.

General Save/Restore Base Registers: There is evidence that even if the base register has
been updated between two memory accesses, the content of the base register may stay the same.
A base register may be freed up for other usages and the original base address is restored before
the next memory reference. In Figure 2, we also include a partial assembly code from a caller
SendMTFValues of the bsW. In this caller, $s1 is used as a base register before calling the bsW.
After returning from the bsW, $s1 is restored and continues to be used as a base register.

Passing Pointers among Multiple Functions: We also observe in other programs, e.g. Mcf,
that register class $a is sometimes used to pass pointers among several levels of function calls.
The pointer in $a is used as the base register in several functions without any save/restore the
content of $a. As a result, the same color for $a is maintained across multiple functions to keep
the signature correlation alive.

3. Establishing A Signature Buffer

In Figure 3, a load is used to illustrate the basic design of the Signature buffer (SB). Besides a
small, fully-associative SB, correct signatures for memory instructions can be established using a
Color Register (CR) and a Current Color Table (CCT). The CR keeps the next available color and
the CCT records the current color of each register. Initially, each CCT entry is set to the
corresponding ID (from 0 to 31) of each register, while the content of CR is set to 32 (assuming
32 registers). When a load is decoded in-order, the current color of the base register (R1) is
fetched from the CCT. The color is concatenated with the displacement value from the encoding
bits of the load to form the signature. Meanwhile, the new color of the destination register (R2) is

Load R2, 100 (R1)

DisplacementColor

Color Register

Incrementer

Current Color
Table (CCT)

R0

R1

R2

R3

Signature Buffer (SB)

Signature

 Figure 3. Memory Signature and Signature Buffer

PENG, PEIR & L AI

 6

updated from the CR and the CR is incremented afterwards. This new color assignment takes
place for all instructions that involve a register update. To guarantee correct data access, all
assigned colors along with the SB are flushed when the color has reached its maximum value and
is wrapped around to the initial value. Essentially, a base register is renamed to a new color upon
an update to the register. When two memory moves have the same color, they always have the
same base address. This coloring technique conservatively assigns a unique color to represent the
register content without accessing the register file to avoid any stall due to data dependent on base
register updates.

The signature buffer is always accessed in-order after the signature is formed. When the
signature of a load matches the signature of a line in the SB, the data can be obtained non-
speculatively from the SB. This is similar to a virtually addressed cache such that a match of the
virtual address guarantees the correct data found in the cache [6]. The SB can be thought as a
virtual cache using the signature as the virtual address. Since the SB is accessed right after the
load is decoded, it is conceivable that load dependents can also be fetched and issued without any
delay. Several design issues of the SB will be discussed in subsequent sub-sections.

3.1. Data Alignment

The low-order bits in the signature, i.e. the offset bits within a signature line, may not be the same
as the offset bits in the real memory address. In order to exploit the spatial reference locality, the
cache line fetched from the first-level cache (L1) needs to be rearranged in the SB to align with
the memory signature. The basic alignment algorithm works as follows. When a memory request
misses the SB, the target cache line is fetched. The target byte/word is placed in the SB according
to offset bits of the signature. For example, assume there are eight units in a cache line as shown
in Figure 4. The signature offset of the target unit is 001, but the offset of the real address is 100.
In this case, the target data 100 is loaded into unit 001 in the SB, and remaining units are loaded
according to their relative position to the target unit. Each SB line may contain a part of two
consecutive L1 lines. We refer these two parts as the High and the Low partitions. In the example
in Figure 4, the partial SB line fill is located in the Low partition of the SB line.

Due to the alignment, there are two options to fill an SB line. The straightforward option is to
fill only a partial SB line and drop the extra data from the target L1 line. Other options include
fetching the second L1 cache line to fill the entire SB line, and/or to place the extra-unaligned L1
data into the 2nd SB line to further benefit spatial locality.

3.2. Handling Signature Synonym

111 110 101

010 001 000

001 000010011100

011100101110111

Alignment

SB Line (partial)

L1 Cache LIne Extra Data

Unfilled Data

Figure 4. Data Alignment in Signature Buffer

A NEW ADDRESS-FREE MEMORY HIERARCHY LAYER FOR ZERO-CYCLE LOAD

 7

One essential issue in designing the SB is to handle the synonym of memory signatures when two
distinct signatures are mapped to the same memory address. This synonym problem has some
similarity with that in virtual caches. In addition to the signature tag, the corresponding L1
address tag is also saved in the SB directory. After the memory address is generated upon an SB
miss, a match through L1 address tags in the SB can identify any signature synonym. A synonym
hit occurs if the line is located in the SB under a signature with a different color. In this case, the
line is invalidated from the old and moved to the new locations. Given that the proposed SB is
fully-associative with small number of lines, the SB synonym can simply be managed by
snooping the SB on every replacement. Virtual caches with set-associative design require extra
hardware to resolve synonyms.

However, signature synonym is complicated by the fact that each signature line may be
aligned to have a portion of two consecutive L1 cache lines. Care must be taken to distinguish a
synonym hit and to invalidate the line from two possible SB locations. The detailed procedure is
described as we walk through the following example.

In Figure 5, the contents of the SB along with the data alignment between the SB and the L1
cache lines are illustrated. The SB directory records the signature tag, the L1 address tag, the
validity bits, and the boundary of High and Low partitions. An SB hit is identified when the tag
matches and the target High/Low partition is valid. The boundary of the partition determines the
High/Low partition. Recall that due to the data alignment, the High/Low partitions indicate two

SB tag Valid Bound

Tag

101

101A

B

C

D

V-V

I-V

000

101 001

010

101

100

SB Directory

L1 Tag Array

SB Data Array

L1 Data Array

 Reguests (Signature): A-001 A-101 B-010 X-000

(Real Address): C-100 D-000 D-101 D-000

L1 tag

C

D

Figure 5. Tag Arrays and Data Alignment between SB and L1 Cache for 4
Consecutive Requests; A, B, X Are Signature Lines; C, D Are L1 Cache Lines;
Three Binary Bits Are Target Unit; “Bound” is Boundary of High / Low Partitions

PENG, PEIR & L AI

 8

data regions from two L1 cache lines. These two lines must be consecutive because each L1 line
cannot exist in the SB with two different colors (i.e. a synonym case). Therefore, only a single L1
address tag is recorded in the SB directory. Note that for simplicity of address comparisons, two
L1 tags may be maintained for each signature line in the small SB.

Assume that three consecutive memory requests with signatures: A-001, A-101, and B-010
are issued, where the binary bits represents the target unit in each signature line. All three requests
have an identical color, and A, B are two consecutive signature lines. These requests are mapped
to the corresponding L1 lines: C-100, D-000, and D-101 in the L1 cache, where C and D are
adjacent lines. Based on the data alignment, the most significant 5 units of line C are loaded to the
SB for the first request. A simple 2's compliment subtraction of the L1 unit ID from the SB unit
ID can determine the High/Low partition and the correct boundary. For the first request, (0,001 -
0,100 = 0,001 + 1,100 = 1,101); the result sign bit ‘1’ indicates the partition is ‘Low’, and the
magnitude ‘101’ is the boundary. The L1 address tag, the corresponding valid bit, and the
boundary 101 are recorded in the SB tag array.

The second request is also a miss even though tag A matches because the target unit 101 is in
the invalid partition. Only the less significant 3 units of L1 line D are loaded to the most
significant 3 units of signature line A. Both valid bits of the High/Low partitions of A are now set.
The third request addresses a different signature line B, and causes another miss. Again,
according to the alignment, the most significant 5 units of line D are loaded to the lower 5 units of
line B in the SB. Next, the fourth request to a signature line X is issued and misses the SB. This
request is mapped to D in the L1 cache with a different color than that of A and B. Now, a
synonym hit is detected and D must be invalidated from the SB. Two invalidations are needed,
one on the High partition of A and the other on the Low partition of B.

3.3. Memory Dependence Disambiguation and Data Forwarding

The SB and the L1 cache are updated when stores are committed. To shorten memory dependence
latency, the stored data can be forwarded to dependent loads before the store is committed. This
store-load forwarding through the Load Store Queue (LSQ) has been applied to bypass the L1
data cache. The store-load dependence can be resolved based on the address comparison. This
dependence resolution is more critical with the SB for two reasons. First, upon an SB hit, a load
may have to wait for any uncommitted store ahead of the load in the LSQ. The uncertainty of
memory dependences may hinder the load and degrades the advantage of fetching data from the
SB. Second, early resolution of store-load forwarding allows bypassing the SB. Using the
signature instead of the address, certain memory dependences can be resolved in parallel with the
SB access. Several steps using an expanded LSQ to alleviate this memory dependence delay are
summarized below.

• Early store-load forwarding: When a load has an identical signature with an early store in
the LSQ, and there is no intervening store in between, the load bypasses the SB and gets the data
from the early store. An intervening store has a different color and is a potential synonym to the
load.

• Early SB access with memory disambiguation: The SB is accessed after a load is fetched
and decoded. The data obtained from the SB can trigger dependent instructions without delays if
there is no intervening store ahead of the load in the LSQ.

• Delayed SB access: The SB is successfully accessed after memory dependence resolutions
because of an existence of intervening stores

• Forwarding from early SB misses: When consecutive SB misses are to the same SB line,
the later miss gets the forwarded data from the early miss. This forwarding can happen before the

A NEW ADDRESS-FREE MEMORY HIERARCHY LAYER FOR ZERO-CYCLE LOAD

 9

load address is computed. (This case is considered as a partial SB hit.)
• Handling multiple SB misses to the same L1 line: When multiple SB misses with

different colors to the same L1 line are detected through the LSQ search, later misses are blocked
from accessing the L1 cache and the requested data will be forwarded when the first miss data is
available from the L1. (This is a synonym case.)

• Normal store-load forwarding: When a load or a store address is computed, a search
through the LSQ to identify the store-load forwarding is performed the same as the normal store-
load forwarding.

For better performance, aggressive early store-load forwarding and speculative use of the SB
data are possible by predicting the existence of memory dependences with the cost of recovery
upon mis-predictions.

3.4. Integrated Pipeline Microarchitecture

The SimpleScalar pipeline is modified and expanded to accommodate performance studies of the
SB [4]. Figure 6 shows the baseline microarchitecture, which is more in-line with the Alpha
21264 [14]. The dispatch stage in the SimpleScalar pipeline is partitioned into a
Decode/Dependence and a Rename stages. In the Decode/Dependence stage multiple instructions
are decoded, and dependences among instructions in the decode/issue packet are detected. The
decoded instructions (micro-ops) are renamed to reorder buffer (RUU) entries at the Rename
stage. The original issue/execute stage becomes a Schedule, a Register read, and an Execute
stages to reflect the delays in scheduling, operands fetching, and execution.

A zero-cycle load can be achieved as long as the load data is ready on or before the Register
stage. Therefore, even with a 4-cycle SB, the load can still trigger the dependents without any
delay. The two fast paths in the figure illustrate advantages with an integrated SB. A load can
jump to the Writeback stage after the Rename stage on an SB hit or an early store-load forwarding
as indicated by the Bypass I. Here we assume the SB access is completed in the
Decode/Dependence and the Rename stages. The Bypass II denotes normal store-load
forwarding. An SB miss may get the data from an early SB miss for the same L1 cache line, or a
successful SB access may be delayed until intervening store dependence is cleared. Such
bypasses, not shown in the figure, could be from the Schedule stage all the way to the Memory
stage.

The proposed SB can be integrated in the baseline microarchitecture as shown in Figure 7. In
the Decode/Dependence and the Rename stages of the baseline design, a load is decoded, the
signature is formed, and the SB is accessed. Meanwhile, a search through the LSQ for memory
dependences with early stores is carried out. If store-load forwarding is found based on matching
load signature with an early store without any intervening store in between, the SB is bypassed
and the stored data from the LSQ satisfies the load. Similarly, if the requested data is found in the
SB and there is no intervening store, the load will jump to the Writeback stage to trigger

Dec/Dep Rename Schedule Register Execute Writeback CommitI-Fetch Memory

Bypass I

Bypass IIAccess SB, Achieve Zero-Cycle Load

Figure 6. The Pipeline Stages and Bypassing

PENG, PEIR & L AI

 10

dependent instructions.
A load is moved to the Schedule stage when the load misses the SB without store-load

forwarding, or an uncertainty of memory dependence exists. The load moves on with fetching the
base register (the Register stage), and generating the memory address (the Execute stage). After
resolving memory dependences, the data may be obtained from the LSQ through forwarding. In
cases of memory dependence free, the load may catch the data found during an early SB access,
or access the L1 cache normally. A load may also wait in the LSQ for an early miss to the same
L1 cache line with the same or different signature.

At the Writeback stage, the SB is filled with the target L1 cache line and the directory is

tag

tag

I-Fetch

Instruction Fetch Queue (IFQ)

Signature Formation

RUU / LSQ

Register / Memory
Scheduler

Addr. Generation
(Integer Unit)

Other Functions
(Function Units)

Data Forwarding
(LSQ)

Data Access
(L1 Cache)

Access SB

data

data

Bypass SB,
Forwarding
from LSQ

Commit

I-Fetch Stage

Decode / Issue Packet
Dependences

LSQ

Decoded Microps

Rename to RUU

Rename Stage

Decode Stage

Backend Stages

LSQ

Figure 7. Pipeline Microarchitecture with an Integrated SB

A NEW ADDRESS-FREE MEMORY HIERARCHY LAYER FOR ZERO-CYCLE LOAD

 11

updated in response to the SB load miss. A backward invalidation to the SB is performed upon a
synonym hit, or a replacement of a L1 cache line. Finally, at the Commit stage, stores will lookup
both the SB and the L1 cache. The SB and the L1 cache are updated accordingly.

4. Performance Evaluation

Performance evaluations of the proposed SB are carried out on a modified out-of-order
SimpleScalar model [4] as described in Section 3.4. This Alpha 21264-like processor is capable
of issuing 8 instructions per cycle. Table 1 summarizes simulation parameters. Note that we
assume the SB or a small L0 has 4 ports with a single-port L1. For the baseline model, a 4-port
L1 is simulated. Nine integer programs, Bzip, Gap, Gcc, Gzip, Mcf, Parser, Twolf, Vpr, Vortex,
and three floating-point programs, Art, Equake, Mesa from SPEC2000 are chosen for our studies.
Due to high L2 misses for Art, we quadruple the L2 size only in Art simulation. A version 2.7.2.3
ssbig-na-sstrix-gcc compiler with option: (funroll-loops -O2) generates the binary codes. With the
optimization level “-O2”, register allocations based on graph coloring techniques are applied. For
each workload, we skip certain instructions based on studies done in [22], and then collect
statistics from the next 200 million instructions.

The out-of-order SimpleScalar pipeline is a functional-driven timing simulation model [4].
For studying the SB, we add value checking in the timing model. The actual value is loaded into
the SB from the simulated memory. The value of loads and stores from functional simulations is
attached throughout pipeline stages. For loads, the functional value is used to verify the value
obtained from the SB. For stores, the functional value is used to update the SB after the store is
committed.

Several design parameters are considered for the SB. First, we simulate 16-bit, 24-bit, and 32-
bit colors. Their results are very similar. Secondly, preliminary studies show that the option of
fetching the second L1 cache line to fill the entire SB line, and/or to place the extra-unaligned L1
data in to the 2nd SB line, slightly improves the SB hit ratios. For design simplicity, we only
consider to fill a partial SB line and drop the extra L1 data. Thirdly, the L1 topology is fixed at
64KB, 4-way set-associative, with variable delays from 5 to 10 cycles. We simulate small SBs
with 4 to 16 lines. The SB access takes 2 cycles as described in Section 3.4. We also verify that a
3- or 4-cycle SB has virtually the same performance improvement. Lastly, for comparisons, we

TABLE 1
SIMULATION PARAMETERS

Fetch/Decode/Issue Width

Branch Predictor
RUU/LSQ Size

SB/L0 Size
L1 Instruction/Data

L2 Cache
Access Latency:

SB/L0/L1/L2/Mem
Cache Port

Integer ALU: Add/Multiply

8

Bimodel, 8K-entry, 8-way BTB
64 / 32

4 to 16 64-byte line
64KB, 4-way, 64-byte Line
2MB, 4-way, 64-byte Line

2 / 2 / 5-10 / 10 / 200

4
4 / 2

PENG, PEIR & L AI

 12

simulate a L0 cache with equivalent size and access time to that of the SB. The SB, L0, L1 and
L2 all have 64-byte line size.

4.1. IPC Improvement

In Figure 8, the IPCs of the twelve programs and their arithmetic means are plotted. Three
mechanisms are compared: the original baseline model (Baseline), the pipeline model with an
integrated SB but without any speculation on memory dependences (SB-nospec), and the pipeline
model with an integrated SB and a perfect memory dependence predictor (SB-perfect). A perfect
predictor allows loads to bypass any stores in the LSQ as long as there is no dependence between
them. In this set of simulations, an 8-entry SB with 2-cycle access is reported and the L1 cache
latency is 5 cycles.

On the average, the SB-nospec and the SB-perfect improve about 12% and 13% of IPCs over
the Baseline. Among the twelve programs, Gap and Gzip have the most improvement about 30%
and 20% for the SB schemes, while Mcf, Parser, Vortex and Art show poor improvement about
4-7% over the Baseline. The impact of a perfect predictor is very limited because the intervening
stores can be resolved quickly. Mcf has low IPCs due to its heavy L2 misses for pointer-chasing
references [8].

To understand the impact on IPCs, we show the distribution of loads based on when and
where the load data is ready in Figure 9. There are six categories of loads that match the classes in
Section 3.3: (1) the data forwarded from a prior store in the LSQ bypassing the SB; (2) the data
obtained from the SB without intervening stores; (3) the data forwarded from an early SB miss to
the same signature line or obtained from the SB after memory dependence resolutions of
intervening stores; (4) the data forwarded from a prior SB miss to the same L1 line with different
colors; (5) the data from a normal store-load forwarding; and (6) the data from a normal L1 cache
access. The first four categories are the beneficiaries of the SB. Among the four, the first two can
obtain the load data in the Rename stage to achieve a zero-cycle load. The category (3) loads may
get the forwarded data before their addresses are computed, while category (4) loads can only
receive the forwarded data after the load address becomes available.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Bzip Gap Gcc
Gzip Mcf

Par
se

r
Twolf

Vor
tex Vpr Art

Equ
ak

e
Mes

a

Ave
ra

ge

IP
C

Baseline

SB-nospec

SB-perfect

Figure 8. Comparison of IPCs: Baseline without SB; SB without Memory
Dependence Speculation; and SB with A Perfect Memory Dependence Predictor

A NEW ADDRESS-FREE MEMORY HIERARCHY LAYER FOR ZERO-CYCLE LOAD

 13

We can make several observations from the figure. First, using the SB, the normal store-load
forwarding and the L1 access are reduced to about 30%. In other words, 70% of the loads benefit
from the proposed scheme to obtain data sooner than accessing it from the L1 data cache. The
perfect predictor improves the category (2) loads, i.e. the data from the SB in the Rename stage,
from 9% to 26% due to bypassing the intervening stores. Gzip is most beneficial using a perfect
predictor with close to 50% of category (2) loads. Detailed analysis indicates that about 52% of
the loads in Gzip are accessing global variables with rarely any true synonym cases. Gap has 40%
category (2) loads with 35% global accesses.

Second, from the SB-nospec, 40% of the loads (category 3) obtain data either from an early
SB miss to the same SB line (and the same High/Low portion), or from the SB after resolving
intervening memory dependences. Memory references exhibit strong spatial locality such that
misses to the same SB line are often close to each other. For example, in Figure 1 and 2, many
adjacent loads’ signatures differ only by a small quantity of the displacement value. As a result,
the later loads can receive data directly from an early L1 access. A typical case is found in
function _word_fwd_aligned() in wordcopy.c of Gcc, where this type of consecutive loads
represents 54% of the total executed loads. Under the SB-perfect, however, these category (3)
loads are reduced to 25% because of the reduction of delayed SB accesses. Again, Gzip and Gap
have high percentage of global accesses with rarely any signature synonym.

Third, an average 20% of the loads belong to category (4) that indicates many short bursts of
SB misses to the same L1 cache line with different colors. This situation is encountered because
of signature synonyms among nearby loads. For example, in accessing array elements, the base
register is incremented by a small stride for each access. Although the color changes, several
array accesses may still address the same L1 line and they all potentially miss the SB. This access

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

B
zi

p

G
a

p

G
cc

G
zi

p

M
cf

P
a

rs
e

r

T
w

o
lf

V
o

rt
e

x

V
p

r

A
rt

E
q

u
a

ke

M
es

a

A
ve

ra
g

e

L
o

ad
 D

is
tr

ib
u

tio
n

Early S-L Forwarding Early SB Access Delayed SB Access
Non-signature Forwarding Normal S-L Forwarding L1 cache access

Figure 9. Distribution of Loads (Six Categories from Bottom to Top in Each Bar): (1) Early
Store-Load Forwarding; (2) Early SB Data Access; (3) Forwarding Early SB Miss or Delayed
SB after Memory Dependence; (4) Forwarding from Prior SB Miss to Same L1 Line; (5) Normal
Store-Load Forwarding; (6) Normal L1 Cache Access

PENG, PEIR & L AI

 14

type represents pre-dominated loads we found in function ProdInt() in integer.c of Gap. A similar
case may also be encountered due to spilled codes with limited registers. Base registers are saved
and restored to the original base address before the next usage. As a new color is assigned on
each register update, nearby loads may miss the SB, but address the same L1 line.

Fourth, in general, the IPC improvements of Figure 8 are consistent with the categories of
loads in Figure 9. For example, Equake, Gap, Gcc, Gzip, and Twolf have more loads that benefit
from the SB, while Art, Mcf, Parser, and Vortex have smaller amount of beneficial loads. Note
that the overall IPC impact is beyond just the pure reduction of load latencies. Improving load
latency may not help the IPC if the load is not located in the critical execution path [24].

4.2. SB Hit Ratio

We collect the SB hits/misses during cycle-based simulations with 8-entry, 2-cycle SBs and 5-
cycle L1 access latency. The SB hit/miss is determined at the Decode/Dependence cycle
regardless an existence of any memory dependence. A load is considered as an SB hit if it hits the
SB, or it misses the SB, but an early miss to the same SB line (and the same High/Low partition)
is already in the LSQ. In Figure 10, we break down SB hits and misses with respect to the base
register IDs. We separate base registers into 5 groups: $v, $a, $s+$t, $gp, and $sp+$s8. The
overall SB hit ratio is about 49%. Mcf is dominated by pointer-chasing references using $a as the
base. A portion of these references access records in linked structures or pass pointers among
multiple functions. The SB scheme handles these type references reasonably well with about 63%
hit ratio for $a.

The distribution and accuracy of individual groups are shown in Table 2. As expected, it is

quite accurate to access global variables and local stack frames. For other loads, the compiler first
picks $v and $a as temporary registers to hold base addresses for memory accesses. The base
address is often updated right before the load that may results in a miss from the SB.

0.E+00

1.E+07

2.E+07

3.E+07

4.E+07

5.E+07

6.E+07

7.E+07

8.E+07

9.E+07

v a
s+

t
gp

sp
+s

8 v a
s+

t
gp

sp
+s

8 v a
s+

t
gp

sp
+s

8 v a
s+

t
gp

sp
+s

8 v a
s+

t
gp

sp
+s

8 v a
s+

t
gp

sp
+s

8 v a
s+

t
gp

sp
+s

8 v a
s+

t
gp

sp
+s

8 v a
s+

t
gp

sp
+s

8 v a
s+

t
gp

sp
+s

8 v a
s+

t
gp

sp
+s

8 v a
s+

t
gp

sp
+s

8 v a
s+

t
gp

sp
+s

8

Bzip Gap Gcc Gzip Mcf Parser Twolf Vortex Vpr Art Equake Mesa Ave.

N
u

m
b

er
 o

f L
o

ad
s

Miss

Hit

Figure 10. SB Hit Ratios Broken Down by Base Registers

A NEW ADDRESS-FREE MEMORY HIERARCHY LAYER FOR ZERO-CYCLE LOAD

 15

The average SB hit ratio of 49% matches well against the load distributions among 6

categories in Figure 9. It has shown that about 50% of the loads benefit from the SB hit (category
(1) through (3)).

4.3. Sensitivity Studies and L0 Cache Comparisons

The impact of the L1 cache latency is shown in Figure 11. The IPCs for the three caching
mechanisms are plotted with respect to the L1 cache latency of 5 to 10 cycles. From the Baseline,
each cycle reduction on L1 cache access latency improves the IPC by 3.5% (slightly lower than
the original SimpleScalar pipeline). The performance benefit of the SB goes up with the L1 cache
latency as we expected. The IPC improvements for the SB-nospec are ranging between 12-16%
for 5 to 10 L1 cache latency cycles. For the SB-perfect, the improvements are about 13-17% over
the simulated baseline model.

To prove the key advantage of early SB accesses, we also simulated a L0 cache with
equivalent size (8 lines) and access time to that of the SB. As shown in Figure 11, the SB out-
performs the L0 by 6-10% without a perfect memory dependence predictor. L0 can only be
accessed after the address is computed. Therefore, with a 2-cycle access L0, a 3-cycle latency is
imposed to the dependent instruction. Furthermore, unlike the SB, L0 miss causes extra delay to
access the L1 cache.

TABLE 2
DISTRIBUTION AND SB HIT RATIOS ACCORDING TO BASE REGISTER GROUPS

Base Regester $v $a $s+$t $gp $sp+$s8

Distribuation (%) 26.2 28.6 11.1 18.2 15.9

SB Hit Ratio (%) 14.1 48.6 51.4 79.8 73.1

0.7

0.8

0.9

1.0

1.1

1.2

1.3

5 6 7 8 9 10

L1 Data Cache Latency

IP
C

SB-perfect
SB-nospec
L0
Baseline

Figure 11. Average IPC for Various L1 Cache Latencies

PENG, PEIR & L AI

 16

We simulate small SB and L0 sizes with 4, 8, 12, and 16 lines. We also simulate fast and slow
SB, L0 and L1 caches. For fast caches, we assume 2-cycle SB/L0 and a 5-cycle L1, while for
slow caches, we assume 3-cycle SB/L0 and an 8-cycle L1. The results in Figure 12 suggest that
the SB size plays a very minor role in improving the IPC. Basically, the working set between base
register updates is small with strong spatial locality. Although larger SB can keep the data longer,
frequent updates of base registers wipe out the correlated data. L0 caches, on the other hand,
show more IPC improvement with bigger size due to higher L0 hit ratios. However, the SB still
shows superior performance with 1KB size. L0 demonstrates negative IPC improvement with 4
cache lines due to the high miss ratio and additional L1 access delays.

As expected, the SB is more beneficial with slower access speeds since both 2- and 3-cycle
SB achieve zero-cycle loads. For L0 caches, it also shows more advantage with slow speeds
because of the slower L1 with longer latency.

Our simulations also show that the overall performance is insensitive to the color size.
Therefore, instead of using separate coloring hardware, it is possible to use the renamed register
ID from the register renamed table to provide unique colors. However, to reduce frequent SB
flushes, it is necessary to search and invalidate the line in the SB along with any outstanding
request using the old physical register ID whenever the register is reused.

4.4. Handling Constant Increment of Base Registers

A base register is often incremented or decremented by a small constant value in a loop-type
program construct. The updated base registers are used to access array variables or structure
records in the next loop iteration. Unfortunately, the update of a base register changes its color
and discontinues the signature correlation among loop iterations. After the base register is
updated, the next load is always a miss in accessing the SB due to the newly assigned color.
However, such an access may often target the same L1 cache line as the previous load before the

-4

-2

0

2

4

6

8

10

12

14

16

256 512 768 1024

L0/SB Size (Bytes)

IP
C

 Im
p

ro
ve

m
en

t
(%

)

Fast-L0 Fast-SB Slow-L0 Slow-SB

Figure 12. IPC Improvement for Various SB/L0 Size;
 Fast: SB/L0: 2 cycles, L1: 5 cycles
 Slow: SB/L0: 3 cycles, L1: 8 cycles

A NEW ADDRESS-FREE MEMORY HIERARCHY LAYER FOR ZERO-CYCLE LOAD

 17

base register is incremented and causes a synonym hit.
The proposed coloring mechanism (Figure 3) can be extended to handle small constant

increment/decrement of a register without assigning a new color to prolong the signature
correlations. The basic design of the extended coloring scheme along with the signature formation
is illustrated in Figure 13. A separate offset field is attached to the current color of each register
and is used to adjust the displacement value when a signature is formed.

A constant increment of a register can be detected when an Addi instruction is decoded with
the same source and destination register. Instead of assigning a new color to the destination
register, the increment value of ‘4’ is added to the offset value. When the signature of a load is
formed, the displacement value in the signature is equal to the original displacement of the load
plus the offset value from the corresponding entry in the current color table. Note that a new color
must be assigned whenever an overflow or an underflow is encountered in computing the new
offset or the displacement. The offset is always reset when a new color is assigned.

The extended coloring scheme with the augmented offset improves the SB hit ratios as
reported in Figure 14. The average hit ratio improves from 49% to 57%. Bzip, Gap and Art
benefit the most due to heavy constant increment of base registers. However, the IPC
improvement of the extended scheme is not as impressive. The range of IPC improvements from
0% to 5% has been observed with an average of a little over 1%. Careful studying the results has
found that the miss due to the base register increment is often executed closely with the previous
miss before the base register is incremented. These adjacent misses are likely to target the same
L1 cache line when the increment value is small. As a result, the current SB miss may get the
forwarded data from the previous miss to reduce the SB miss penalty.

Load R2, 100 (R1)

DisplacementColor

Signature

Addi R1, R1, #4

+

OffsetColor

R1
+

.....

Figure 13. Extended Coloring Scheme and Signature Formation

PENG, PEIR & L AI

 18

0%

10%

20%

30%

40%

50%

60%

70%

80%

Bzip Gap Gcc
Gzip Mcf

Par
se

r
Twolf

Vor
tex Vpr Art

Equ
ak

e
Mes

a

Ave
ra

ge

H
it

R
at

io

Original coloring scheme New coloring scheme

Figure 14. Improvement of SB Hit Ratios with Extended Coloring Scheme

5. Applicability on Intel’s X86 Architecture

All discussions so far are based on the SimpleScalar instruction set. In this section, we will
describe qualitatively integrations of an SB under the Intel’s x86 instruction set architecture [12].

5.1. Stack Operations:

The functions of the stack, such as saving/restoring register content, passing parameters,
providing work space for local and temporary variables, etc. are generally the same on both
SimpleScalar and x86 architectures. A runtime stack is managed directly by the CPU under the
x86 architecture. The ESP register holds a 32-bit offset into some location on the stack. Usually,
the ESP register is indirectly modified by instructions such as CALL, RET, PUSH and POP. This
indirect update of the ESP register is different than the stack pointer ($sp) manipulations in
SimpleScalar. The stack pointer in SimpleScalar is added or subtracted with a constant value to
reserve proper space on the stack (Figure 1). The correct displacement value is used in
conjunction with the base address in the stack pointer to address the reserved stack space.

Since the content of the ESP is modified whenever CALL, RET, PUSH or POP is executed, a
new color must be assigned to the ESP. This is undesirable as the signature correlation is broken
upon the execution of these instructions. However, instead of a new color, a constant
increment/decrement of registers can be handled by augmenting an offset to the current color of
the respective register. The offset is used to adjust the displacement value when the signature is
formed as described in Section 4.4.

Stack space can also be created for local or temporary variables under the x86 architecture.
To reserve stack space, the ESP register is incremented/decremented properly. A correct
displacement value is used to provide the offset from the basis address in the ESP to access the
local variables. The signature correlation and spatial locality for local variables are exploited the
same way as that in SimpleScalar.

A NEW ADDRESS-FREE MEMORY HIERARCHY LAYER FOR ZERO-CYCLE LOAD

 19

5.2. Other Memory Operations

The MOV instruction in x86 moves the data between registers and memory. Besides the
base+displacement address mode, x86 allows a full memory address mode. In the full-address
mode, the signature is formed using the entire memory address directly from the encoding bits of
the MOV instruction. However, it is necessary to distinguish the full-address signature from the
signature formed by the coloring mechanism to preserve the uniqueness of the signature. One
simple solution is to add a single address-mode bit to the signature to make the distinction of the
two modes. For the base+displacement addressing mode, the same coloring technique as that in
SimpleScalar can be applied to form the signature.

Another source of complications in x86 comes from those ALU instructions with a memory
source operand. Such instructions involve a memory load along with an ALU operation. In order
to take the advantage of the SB, this type of instructions is treated like a load after the decode
stage. The signature is formed and the SB is accessed to achieve a zero-cycle load.

The INC and DEC instructions add one or subtract one respectively from a single operand. For a
register operand, the color of the register can stay the same as how the PUSH and the POP instructions are
handled to prolong the signature correlation.

6. Related Work

There have been several attempts to minimize the cache latency penalty by providing a zero-cycle
load, i.e. the load and its dependent instructions can be fetched and issued simultaneously. An
aggressive approach is to predict and speculate the load value [15],[16],[26],[23],[25],[11],[5], or the
load address [9],[10],[7],[2] in early stages of the processor pipeline to issue load dependents without
any delay. Both load value and load address predictions generally suffer low accuracy. For address
predictions, a lengthy cache access is still required which may delay load dependents even if the
predicted load address is correct.

Memory renaming techniques establish dynamic dependence correlations between stores and
loads [25]. A separate storage element called a value file is used to save the correlated data. When a
memory load instruction is fetched, an indirect access to the value file based on the PC of the load can
retrieve the data without going through the lengthy cache access. A similar idea has been use to exploit
store-load [18] and load-load [19] correlations. The PC of the load can indirectly access a small
synonym file, which keeps the correlated data. Another method of capturing store/load correlations
has been proposed recently [17]. Instead of building dynamic dependence correlations, a symbolic
cache is used to capture syntax correlations based on the encoding bits from stores and loads.

All above methods are speculative in nature. The speculative load value must be verified against
the value obtained from a normal cache access with penalties for mis-predictions. Recently, another
technique for early load address resolution was proposed [3]. Certain types of memory loads, such as
stack accesses, global constants, or stride-based memory accesses, have regular increment/decrement
address patterns. By tracking base registers for this type of loads, register updates can be performed at
the decode stage. As a result, address generations and cache accesses for dependent loads can start
earlier. Although non-speculative, this approach still needs lengthy cache accesses.

A small level-0 data cache (L0) [27], a different form of small buffer [13], or a L0 only for critical
loads [21] helps to reduce the load latency. However, since access to the L0 requires going through
normal pipeline stages to decode and generate addresses, it usually cannot achieve 0-cycle loads.

The proposed signature buffer has several advantages over existing cache latency hiding methods.
First, different from the symbolic cache, the SB is non-speculative. The data obtained from the SB
without intervening stores is always correct. Second, all loads can access the data from the SB without

PENG, PEIR & L AI

 20

any restriction on the type of the loads or certain special base registers. Third, unlike the address
prediction or the register-tracking scheme, loads through the SB can bypass the address generation and
cache access completely. Fourth, unlike the memory renaming technique, where the store/load
correlation is established dynamically by the hardware, the store/load correlation is established from
the instruction encoding bits to simplify hardware requirement. Finally, the SB uses line-based
granularity to capture the spatial locality among memory references.

7. Conclusion

A non-conventional signature buffer, which is addressed by the signature of store/load
instructions, is introduced. A memory signature using the color of the base register and the
displacement can be quickly formed to enable data accesses through the SB in early processor
pipeline stages. A color of a base register is used to differentiate contents of the same base
register. A new color is assigned whenever the respective register is updated. Therefore, when two
memory requests have the same memory signature, they address to the same memory location.
The load penalty through regular caches can thus be eliminated when the requested data is
obtained from the SB. Performance evaluation of selected SPEC programs has demonstrated that
the proposed method can successfully improve the latency for about 70% of the loads. On an
Alpha 21264-like processor model, these early loads using the SB can translate to about 12-17%
of IPC improvement.

Acknowledgements

This work is supported in part by an NSF grant EIA-0073473 and by research and equipment
donations from Microprocessor Research Lab and China Research Center of Intel Corp.
Anonymous referees provide helpful comments.

References

[1] V. Agarwal, M. S. Hrishikesh, S.W. Keckler, and D.Burger, “Clock rate versus IPC: the end
of the road for conventional microarchitectures,” Proc. of 27th Int'l Symp. on Computer
Architecture, Vancouver, Canada, June 2000, pp. 248-259.

[2] M. Bekerman, S. Jourdan, R. Ronen, G. Kirshenboim, L. Rappoport, A. Yoaz, and U.
Weiser, “Correlated Load-Address Predictors,” Proc. of 26th Int'l Symp. on Computer
Architecture, Atlanta, GA, May 1999, pp. 54-63.

[3] M. Bekerman, A. Yoaz, F. Gabbay, S. Jourdan, M. Kalaev, and R. Ronen, “Early Load
Address Resolution Via Register Tracking,” Proc. of 27th Int'l Symp. on Computer
Architecture, Vancouver, Canada, June 2000, pp. 306-315.

[4] D. Burger and T. Austin, “The SimpleScalar Tool Set, Version 2.0,” Technical Report
#1342, CS Department, University of Wisconsin-Madison, June 1997.

[5] B. Calder, G. Reinman, and D. Tullsen, “Selective Value Prediction,” Proc. of 26th Int'l
Symp. on Computer rchitecture, Atlanta, GA, May 1999, pp. 64-75.

[6] M. Cekleov and M. Dubois, “Virtual-address caches. Part 1: problems and solutions in
uniprocessors,” IEEE Micro, Vol. 17, Issue 5, Sept/Oct 1997, pp.64-71

[7] C. Chen and A. Wu, “Microarchitecture Support for Improving the Performance of Load

A NEW ADDRESS-FREE MEMORY HIERARCHY LAYER FOR ZERO-CYCLE LOAD

 21

Target Prediction,” Proc. of 30th Int'l Symp. on Microarchitecture, Triangle Park, NC, Dec.
1997, pp. 228-234.

[8] J. Collins, S. Sair, B. Calder and D. M. Tullsen, “Pointer Cache Assisted Prefeching,” Proc.
of 35th Int'l Symp. on Microarchitecture, Istanbul, Turkey, Nov. 2002, pp. 62-73.

[9] R. Eickemeyer and S. Vassiliadis, “A Load-Instruction Unit For Pipelined Processors,” IBM
Journal of Research and Development, Vol. 37(4), pp. 547-564, July 1993.

[10] J. Gonzalez, and A. Gonzalez, “Speculative Execution via Address Prediction and Data
Prefetching,” Proc. of 1997 Int'l Conf. on Supercomputing, Vienna, Austria, Aug. 1997, pp.
196-203.

[11] J. Gonzalez, and A. Gonzalez, “The Potential of Data Value Speculation to Boost ILP,”
Proc. of 1998 Int'l Conf. on Supercomputing, Melbourne, Australia, June, 1998, pp. 21-28.

[12] Intel, “IA-32 Intel Architecture Software Developer’s Manual, Volume 1,2,3,” 2003.

[13] L. John, Y. Teh, F. Matus, and C. Chase, “Code Coalescing Unit: A Mechanism to Facilitate
Load Store Data Communication,” Proc. ICCD’98, Oct. 1998, pp. 550-557.

[14] R.E. Kessler, “The Alpha 21264 microprocessor,” IEEE Micro, Vol 19, Issue 2, Mar/Apr
1999, pp. 24-36.

[15] M. Lipasti, C. Wilkerson and J. Shen, “Value Locality and Load Value Predictionls,” Proc.
of the 7th Int'l Conf. on Architectural Support for Programming Languages and Operating
Systems, Boston, MA, Oct. 1996, pp. 138-147.

[16] M. Lipasti and J. Shen, “Exceeding the Limit via Value Prediction,” Proc. of 29th Int'l
Symp. on Microarchitecture, Paris, France, Dec. 1996, pp. 226-237.

[17] Q. Ma, J-K. Peir, L. Peng, and K. Lai, “Symbolic Cache: Fast Memory Access Based on
Program Syntax Correlation of Loads and Stores,” Proc. of 2001 Int'l Conf. on Computer
Design, Austin, TX, Sep. 2001, pp. 54-61.

[18] A. Moshovos and G. Sohi, “ioStreamlining Inter-Operation Memory Communication via
Data Dependence prediction,” Proc. of 30th Int'l Symp. On Microarchitecture, Triangle
Park, NC, Dec. 1997, pp. 235-245.

[19] A. Moshovos and G. Sohi, “Read-After-Read Memory Dependence Prediction,” Proc. of
32nd Int'l Symp. on Microarchitecture, Haifa, Israel, Nov. 1999, pp. 177-185.

[20] L. Peng, J-K. Peir and K.Lai, “Signature Buffer: Bridging Performance Gap Between
Registers And Caches,” Proc. of 10th Int’ Symp. on High-Performance Computer
Architecture, Madrid, Spain, Feb. 2004, pp. 164-175.

[21] R. Rakvic, B. Black, D. Limaye and J. Shen, “Non-vital Loads”, Proc. of 8th Int’l Symp. on
High-Perfomance Computer Architecture, Boston, MA, Feb. 2002, pp. 145-154.

[22] S. Sair, M. Charney, "Memory Behavior of the SPEC2000 Benchmark Suit," Tech. Report,
IBM Corp. Oct. 2000.

[23] Y. Sazeides and J. Smith, “The Predictability of Data Values,” Proc. of 30th Int'l Symp. on
Microarchitecture, Triangle Park, NC, Dec. 1997, pp. 248-258.

[24] S.T. Srinivasan, R.D. Ju, A.R. Lebeck and C. Wilkerson, “Locality vs. Criticality,” Proc. of
28th Int'l Symp. on Computer Architecture, Goteborg, Sweden, July 2001, pp.132-143.

PENG, PEIR & L AI

 22

[25] G. Tyson and T. Austin, “Improving the Accuracy and Performance of Memory
Communication Through Renaming,” Proc. of 30th Int'l Symp. on Microarchitecture,
Triangle Park, NC, Dec. 1997, pp. 218-227.

[26] K. Wang, and M. Franklin, “Highly Accurate Data Value Prediction using Hybrid
Predictors,” Proc. of 30th Int'l Symp. on Microarchitecture, Triangle Park, NC, Dec. 1997,
pp. 281-290.

[27] K. M. Wilson, K. Olukoton and M. Rosenblum, “Increasing cache port efficiency for
dynamic superScalar microprocessors,” Proc. of 23rd Int'l Symp. on Computer Architecture,
Philadelphia, PA, May 1996, pp.147-157.

