
Journal of Instruction-Level Parallelism 7 (2005) 1-11 Submitted 01/05; published 04/05

2FAR: A 2bcgskew Predictor Fused by an Alloyed

Redundant History Skewed Perceptron Branch Predictor

Veerle Desmet veerle.desmet@elis.ugent.be

Hans Vandierendonck hans.vandierendonck@elis.ugent.be

Koen De Bosschere koen.debosschere@elis.ugent.be

Ghent University – UGent

Parallel Information Systems (PARIS), member HiPEAC

Department of Electronics and Information Systems (ELIS)

Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium

Abstract

This paper describes the 2bcgskew branch predictor fused by an alloyed redundant his-
tory skewed perceptron predictor, which is our design submitted to the 1st JILP Champi-
onship Branch Prediction (CBP) competition. The presented predictor intelligently com-
bines multiple predictions (fusion) in order to obtain a more accurate prediction. The
various predictions are delivered by a 2bcgskew predictor and include the 2bcgskew pre-
diction itself as well as the bias and hysteresis bits of its component predictors. Together
with global history, local history and address information, these predictions are used in
the fusion predictor, which is an alloyed redundant history skewed perceptron predictor
(RHSP). The new predictor design outperforms gshare by 40% on the CBP traces. This
improvement also manifests itself for the SPEC INT 2000 benchmarks.

1. Introduction

Past research has demonstrated that monolithic branch predictors do not profit much from
very large hardware budgets and are easily outperformed by hybrid branch predictors [1, 2].
Hybrid branch predictors use the predictions of multiple smaller predictors (the component
predictors) to compute another yet more accurate prediction. Several mechanisms to com-
bine the component predictors are documented in the literature, e.g. the meta-predictor that
predicts which component predictor is correct [1, 2], the majority vote [3] and fusion [4].
Fusion appears to be the most powerful combination scheme as it can learn when it should
follow one of the components or if it should follow the majority vote. Additionally, fusion
adapts this decision to each individual branch and branch history.

In the original design, the fusion predictor takes the outcomes of the component predic-
tors and combines these with the branch address, global history, etc. to form an index into
a fusion table [4]. The fusion table contains saturating counters that store the preferred
branch direction for this index. These saturating counters need to be several bits wide (e.g.
4) indicating that the true branch direction varies frequently, but the saturating counter
should not track it very closely. This indicates that saturating counters are not the best
choice for a fusion predictor. A different approach to compute predictions is used in the
perceptron predictor [5]. The perceptron predictor computes the prediction as a weighted
sum of its inputs (branch address, history bits, component outcomes). Through experi-

1

Desmet, Vandierendonck & De Bosschere

mentation we determined that the perceptron predictor is indeed a more accurate fusion
predictor.

After experimenting with various combinations of component predictors, we found the
combination of a bimodal predictor, a gshare component, and the 2bcgskew predictor [3]
gives the best results. Note that the 2bcgskew predictor itself is a hybrid predictor since
it uses a meta-predictor to select between a bimodal predictor and the egskew (enhanced
gskew) predictor [6]. The egskew prediction is the majority vote between a bimodal pre-
dictor and two gshare predictors, each having different history lengths. Since the 2bcgskew
predictor already contains the bimodal and gshare components that we desire in the fusion-
based predictor, these components do not need to be duplicated. Moreover, this tweak
makes it much easier to fit a fusion-based predictor into a fixed bit budget. Besides using
the component outcomes (the bias bits of the predictors), the hysteresis bits were also fed
into the fusion predictor. These bits give additional information as they indicate whether the
component predictor is certain (strongly biased) or uncertain (not strongly biased) about its
prediction. In conclusion, the fusion predictor benefits from the outcome of the 2bcgskew
predictor as well as from the outcome and internal state of the 2bcgskew components.

This paper is organized as follows. After detailing the predictor organization in section 2,
we present our baseline predictor in section 3. Performance results for a 2FAR predictor are
discussed in section 4. This includes a comparison to other branch predictors, a sensitivity
analysis to the parameter set, a demonstration of the scalability to other budgets, and
results for the frequently reported SPEC INT 2000 traces. Section 5 concludes the paper.

2. Predictor organization of 2FAR

The 2bcgskew predictor fused by an alloyed redundant history skewed perceptron predictor,
which we call 2FAR, contains two large pieces as illustrated in Figure 1. On the left we
show the 2bcgskew predictor with its four components, which is connected to the fusion
predictor shown on the right.

The 2bcgskew part contains a bimodal branch predictor BIM, two gshare-like pre-
dictors G0 and G1 for handling long and very long global histories respectively and a
meta-predictor META. The meta-predictor selects either the BIM prediction or the egskew
prediction, i.e. the majority vote between BIM, G0, and G1.

A budget of 2N bits for the four 2bcgskew tables is spent as engineered by Seznec et
al. [3, 7]:

• 2N−1 bits are shared by the G0 and G1 prediction tables,

• 2N−2 bits are shared by the BIM and META prediction tables, and finally

• 2N−2 bits are shared by the four hysteresis tables.

Further, each of the component predictors uses different lengths from the global branch
history register (GBHR) to accommodate both programs that require long histories and
programs that benefit from shorter histories. The history length equals (N−12), 4∗(N−12)
and 8 ∗ (N − 12) bits for the META, G0 and G1 tables respectively. These lengths turn out
to be slightly better than the original suggestion of using (N −11) bits. Although Seznec [7]
uses history information to index the BIM component too, we found that in our setting it is

2

A 2bcgskew Predictor Fused by an Alloyed RHSP Predictor

BIM METAG1G0 PERCEPTRON LBHR

prediction

weights

F0 F1 F2 F3

sum of inputs
computes weighted

2bcgskew

GBHR

egskew

b+h

b+h

b+h

maj.
vote

b+h

ADDRESS

Figure 1: The 2FAR predictor: a 2bcgskew predictor fused by an alloyed redundant history
skewed perceptron predictor.

more appropriate not to use history information. Indeed, making the component predictors
more/ accurate does not necessarily make the fusion predictor more accurate.

The fusion predictor is a perceptron predictor, which is motivated in the introduction.
We use the most accurate variant of the perceptron predictor documented in the literature,
i.e. the redundant history skewed perceptron predictor (RHSP) [8]. This RHSP is a single
layer perceptron that computes the perceptron output y as the dot product of an input vector
and a weight vector. The input vector of the fusion predictor is composed of a large number
of bits including global history bits, local history bits, bits representing internal state of
the component predictors and pseudo-tags. Pseudo-tags are the least significant bits of the
branch address that have not been used to select the weight vector in the perceptron table.
Each of these input bits has a weight associated with it. The output y is computed as the
sum of the weights, multiplied by (−1)b, where b is the input bit. The perceptron predicts
taken when y ≥ 0 and not taken otherwise.

The vector of weights is read from the perceptron table. This perceptron table is
skewed [8], meaning that it is divided into 4 banks, each bank containing a subset of the
weights, and each indexed using a different hash of the branch address and the global
history. The branch address is hashed with itself (further termed as PC hashing) be-
fore hashing with the history bits. The address [a8, a7, a6, a5, a4, a3, a2, a1, a0] is hashed
to [a8 ⊕ a0, a7 ⊕ a1, a6 ⊕ a2, a5 ⊕ a3, a4]. The 4 banks use 0, b(i + 1)/2c, i and 2i global
history bits respectively, where i denotes the number of bits to index the perceptron table.

3

Desmet, Vandierendonck & De Bosschere

The reorganized address vector and the history are used in the different (skewed) hashing
functions, each selecting a subset of the weights. The weights are 8-bit signed integers.
Neighboring weights are stored in a ((A+B),(A-B)) format [8]. Saving bits was not a pur-
pose of this alternative bit representation, but it has a small positive impact on the predictor
performance.

The accuracy of a single layer perceptron is limited as it can only learn linearly separable
functions. This is a real limitation as XOR (to test the equality of two history bits) is a
frequently occurring yet non-linearly separable function. This limitation can be relieved by
explicitly adding the XOR of the history bits. This technique is known as redundancy [8].
Redundant histories can be computed in many ways. We compute the n-th order redundant
version of a history h as h⊕ (h � n). For a history h with length l, there are at most l−n
bits for its n-th order redundant history. For instance, the 2-nd order redundant version of
history [h5, h4, h3, h2, h1, h0] is defined as [h3 ⊕ h5, h2 ⊕ h4, h1 ⊕ h3, h0 ⊕ h2] and has only
l − n = 6− 2 = 4 bits. We apply redundancy separately to global history, local history and
the pseudo-tags as will be further discussed in the next section.

During update, the 2bcgskew predictor uses a partial update strategy [6]. All compo-
nents are periodically forced to weakly correct predictions to avoid the problems associated
with this strategy. The update of the perceptron weights is similar to Jiménez’s tech-
nique [5], i.e. a weight is incremented (by one) when the branch outcome agrees with the
corresponding input bit, and is decremented (by one) when it disagrees. Also, the weights
are only updated on a misprediction or when |y| ≤ b1.93h + 14c, with h the total length of
the input vector.

3. Baseline 2FAR

While the previous section describes the 2FAR predictor in general, this section details
the baseline 2FAR configuration of 64K bits. Note that this configuration differs from the
one used for the CBP competition and gives slightly better performance (3.15 versus 3.17
mispredicted conditional branches per kilo instructions [MPkI]).

Roughly half of the 64K bits budget available for the competition is consumed by the
2bcgskew predictor, i.e. 215 bits for the shared component tables and 24 bits to store the
global history. The fusion predictor has a perceptron table with 32 entries. The 4 banks of
the perceptron are indexed with 0, 3, 5, and 10 global history bits. Each perceptron entry
has 127 8-bit weights so the fusion predictor requires 31.7K bits. The corresponding input
bits are documented in Table 1 together with their distribution between the four banks.
The 6 bits of local history are taken from a 64-entry local history table which consumes
0.4K bits. Finally, 40 bits of global history are needed. The grand total is 65728 bits.

4. Evaluation

We mainly evaluate our 2FAR predictor with the distributed CBP traces each of which
contains approximately 30 million instructions and includes both user and system activity.
These CBP traces belong to four categories—SPECfp (FP), SPECint (INT), Multimedia
(MM), and Server (SERV)—with 5 traces per category. Any reported average is the arith-
metic mean over these 20 CBP traces. The metric for comparing branch prediction tech-

4

A 2bcgskew Predictor Fused by an Alloyed RHSP Predictor

Information Redundancy Length Bank 1 Bank 2 Bank 3 Bank 4

Global history pure 40 10 10 10 10

Global history 1 37 9 9 9 10

Local history pure 6 1 2 1 2

Local history 1 5 1 1 1 2

Local history 2 4 1 1 1 1

Local history 3 3 0 1 1 1

Pseudo-tag pure 8 2 2 2 2

Pseudo-tag 1 8 2 2 2 2

Pseudo-tag 2 6 1 2 1 2

Outcome history pure 9 9 0 0 0

Bias pure 1 1 0 0 0

Total information length 127 37 30 28 32

Table 1: Information bits supplied to the perceptron component of the baseline 2FAR at
64Kbits. The redundancy of the bits is shown as well as how the bits are distributed
to the 4 banks.

niques is the number of mispredicted conditional branches per kilo instructions (MPkI),
which is a better metric than misprediction rate because it also captures the density of
conditional branches in a program [9]. Obviously, lower MPkI is better.

In this section, we first compare the 2FAR predictor against three well-studied branch
predictor designs—gshare [2], 2bcgskew [7], and the redundant history skewed perceptron
branch predictor [8]—at the bit budget available for the contest; i.e. (64K + 256) bits.
After a sensitivity analysis to the many parameters in the 2FAR predictor, we extend the
2FAR design to explore both smaller and larger bit budgets. To conclude, we illustrate the
performance on the SPEC INT 2000 traces because these are frequently used in today’s
branch predictor studies.

4.1 Comparison to other branch predictors

Starting with an average 5.3 MPkI for the baseline gshare branch predictor provided with
the framework, we gradually improve the performance by introducing more complexity
into the branch predictor. In search of more accurate predictors, there are two important
milestones worth mentioning. The first is a 64Kbits 2bcgskew branch predictor for which we
measure 3.87 MPkI. In this design, the 2bcgskew is exactly as engineered by Seznec [7] and
not optimized to be part of a fusion predictor scheme; i.e. the history lengths are computed
as N −12. The second is a RHSP (more specifically, an alloyed skewed perceptron predictor
without redundancy) that consumes the total bit budget. This predictor reaches 3.42 MPkI.
Its input layer consists of the (mandatory) bias input, 35 global history bits, 8 pseudo-tag
bits, and 4 local history bits, which are read from a 4096 entry local history table. The
8-bit weights are read from a 128-entry perceptron table. The table’s 4 banks are accessed

5

Desmet, Vandierendonck & De Bosschere

0

2

4

6

8

10

12

14

F
P

-1

F
P

-2

F
P

-3

F
P

-4

F
P

-5

IN
T

-1

IN
T

-2

IN
T

-3

IN
T

-4

IN
T

-5

M
M

-1

M
M

-2

M
M

-3

M
M

-4

M
M

-5

S
E

R
V

-1

S
E

R
V

-2

S
E

R
V

-3

S
E

R
V

-4

S
E

R
V

-5

a
v
e

ra
g

e

M
P

k
I

gshare

2bcgskew
RHSP

2FAR

Figure 2: Performance comparison at 64Kbits between gshare, 2bcgskew, RHSP, and 2FAR.

using indices generated from (skewed) hash functions of the branch address and either 0, 4,
8, or 16 global history bits.

The 2bcgskew fused by an alloyed RHSP (i.e. 2FAR) on average outperforms both
aforementioned prediction schemes achieving 3.15 MPkI. However, this does not hold for
every individual trace. E.g. for INT-3 the RHSP would be a better choice, and most server
traces can significantly benefit from a pure 2bcgskew design. In the next section, we focus
on specific design options and their impact on the individual traces.

4.2 Sensitivity analysis of parameters

Due to its fusion and alloyed nature, the 2FAR branch predictor is susceptible to adjust-
ments of a lot of parameters, e.g. history length, table size, redundancy etc. In this section,
we take the baseline described in section 3, and we quantify the influence of the various
design aspects of the 2FAR predictor by varying one aspect at a time.

In our first approach, we neglect one aspect (e.g. redundancy) and reconfigure the 2FAR
predictor in order to consume the complete 64Kbits in an optimal way. Figure 3 summarizes
this analysis by illustrating absolute increase of MPkI (negative values are for reductions)
over the baseline 2FAR predictor for various designs. We order the impact of the design
features from high to low, as follows:

• Removing skewing from the fusion perceptron predictor has a major negative effect
on MPkI, increasing it to 3.78, which is over 16% worse on average, and this trend
holds for every individual trace. Skewing limits aliasing in the perceptron weight
table, and since it does not require additional storage it is a very effective way to
increase accuracy.

• If global history is discarded, the 2FAR design replaces the global history inputs
with older and more accurate local history bits: 17 bits out of a 512-entry local history

6

A 2bcgskew Predictor Fused by an Alloyed RHSP Predictor

-0,5

0

0,5

1

1,5

2

2,5

3

F
P

-1

F
P

-2

F
P

-3

F
P

-4

F
P

-5

IN
T

-1

IN
T

-2

IN
T

-3

IN
T

-4

IN
T

-5

M
M

-1

M
M

-2

M
M

-3

M
M

-4

M
M

-5

S
E

R
V

-1

S
E

R
V

-2

S
E

R
V

-3

S
E

R
V

-4

S
E

R
V

-5

a
v
e
ra

g
e

M
P

k
I

in
c
re

a
s
e

o
v
e

r
b

a
s
e

lin
e

2
F

A
R

No skewing
No global history
No bias, no hysteresis bits
No local history
No redundancy
No pseudo-tags
No pc hashing

Figure 3: Sensitivity to design options.

table. Except for some minor reductions, all traces show significant increase in MPkI
when no global history is available.

• No fusion—not shown in Figure 3—represents the pure RHSP configuration from
section 4.1. As said before, only INT-3 significantly benefits from not fusing.

• Applying simple fusion—only the 2bcgskew outcome is connected to the RHSP, the
bias and hysteresis bits are not—increases the MPkI by 6.5% up to 3.37. In
order to consume the total bit budget, this design allocates 6 additional weights for
global history and 2 more for redundant pseudo-tag information (in exchange for the
weights associated with bias and hysteresis bits). All traces except FP-1 and INT-
1 benefit from using internal state from the 2bcgskew components as input to the
skewed perceptron predictor.

• Without local history the MPkI would increase by 3% to 3.25. In exchange for
the freed bit budget, we allocate a much longer global history (up to 48 bits) and
slightly increase the number of pseudo-tag inputs. Despite substantial losses for some
traces like FP-5, INT-3, and MM-3, most traces are insensitive to the presence of local
history information.

• When redundant information is left out of the history vector supplied to the
perceptron, the simplest configuration change is to just use more original informa-
tion. However, the optimal design in this case doubles the entries of the perceptron
table in addition to slightly shortening the global history length. This illustrates the
importance of reducing aliasing in the perceptron table over lengthening the global
history.

• Absence of pseudo-tags shows minor influence on average. However, discarding
pseudo-tags increases the MPkI of INT-1 by 15%. Including pseudo-tags as an input
to the perceptron has a similar effect on performance as increasing the number of
perceptrons in the table, yet takes less space.

7

Desmet, Vandierendonck & De Bosschere

2

2,5

3

3,5

4

4,5

5

10000 100000 1000000

predictor size (bits)

M
P

k
I

perceptron table size
global history length
perceptron weight size
2bcgskew table size
skewing

2

2,5

3

3,5

4

4,5

5

60000 62000 64000 66000 68000 70000 72000 74000

predictor size (bits)

M
P

k
I

local history table size
local history length
bias with hysteresis
bias without hysteresis
2bcgskew history length
skewing

Figure 4: Tuning the different parameters of a 2FAR predictor.

• PC hashing or rotating the program counter before hashing it with itself has little
impact, but it also has no cost.

In an orthogonal approach, we consider the impact that changing the various design
parameters of our baseline 2FAR predictor has on the bit budget in order to explore how
to use smaller and larger budgets. Figure 4 shows average MPkI versus predictor size. For
clarity the results are broken down into two figures according to whether the impact on
predictor size is large (left) or small (right).

In the left figure, we show:

• The size of the perceptron table, varied in number of entries, has a large influence
on both MPkI and predictor size.

• The global history length has a major impact on the overall predictor size because
it mainly determines the number of weights that have to be stored in the perceptron
table. Since MPkI continued to decrease up to a length of 64 bits, which is the maxi-
mum length we simulated, very long global histories do contain relevant information
and should be considered in future research.

• For the perceptron weight size an optimum is obtained at 8 bits. Smaller weights
are not accurate enough, whereas larger weights do not further decrease the MPkI.

• The 2bcgskew proportion. Here we found that half the budget needs to be spent
on the 2bcgskew predictor to provide accurate component predictions for fusion.

The right figure (which uses a different scale on the x-axis) illustrates that:

• The optimal local history table size is 64 entries, which is used in the baseline
configuration.

• Local history length has a minor influence and only effects a few benchmarks (INT-
1, MM-3, and MM-5).

• Nine information bits flow from the components of the 2bcgskew to the alloyed RHSP:
the bias and hysteresis bits of each of the four 2bcgskew components and the final

8

A 2bcgskew Predictor Fused by an Alloyed RHSP Predictor

0

1

2

3

4

5

6

7

8

9

10

F
P

-1

F
P

-2

F
P

-3

F
P

-4

F
P

-5

IN
T

-1

IN
T

-2

IN
T

-3

IN
T

-4

IN
T

-5

M
M

-1

M
M

-2

M
M

-3

M
M

-4

M
M

-5

S
E

R
V

-1

S
E

R
V

-2

S
E

R
V

-3

S
E

R
V

-4

S
E

R
V

-5

a
v
e

ra
g

e

M
P

k
I

32K bits
64K bits
128K bits
768K bits

2FAR size 2bcgskew perceptrons global history pseudo-tags local history local history
(bits) (bits) in RHSP (r0,r1,r2,r3) (r0,r1,r2,r3) (r0,r1,r2,r3) table (entries)

32K 16K 16 25,24,24,0 8,8,8,0 7,4,4,3 64

64K 32K 32 40,37,0,0 8,8,6,0 6,5,4,3 64

128K 64K 32 48,47,46,44 8,8,8,8 6,5,4,3 512

768K 256K 128 63,62,61,60 8,8,6,0 12,11,10,9 16384

Figure 5: Up: Performance for various 2FAR predictor sizes. Down: Details on configu-
ration settings—r0,r1,r2,r3 denote the lengths (bits) for the pure, 1st, 2nd, 3rd
redundancy level respectively.

2bcgskew prediction bit. We distinguish two series. The first—labeled with bias
with hysteresis—includes both bias and hysteresis bits of the 2bcgskew components
in the RHSP predictor, while bias without hysteresis only includes the bias bits. Both
also include the 2bcgskew prediction bit. Worst case scenarios are identified as (i)
only the state of the meta predictor is provided to the RHSP predictor and (ii) a
predictor without connections between 2bcgskew and RHSP, i.e. a pure RHSP. The
most important outcome bit is the 2bcgskew prediction bit and the egskew outcome
is useful if none of the component states (i.e., the bias and/or hysteresis bits) are
transferred to the RHSP predictor. To conclude, the internal state of the two gshares
and the bimodal components are equally important, but the meta predictor is not
important.

• Minor variations are measured by varying the global history length used in the 2bcgskew.

• Skewing, which has no impact on predictor size, is of paramount importance.

4.3 Scalability

Figure 5 illustrates the scalability of the 2FAR predictor to other bit budgets. As with all
predictor designs, the amount of available bits to store information has a major impact on
its performance.

9

Desmet, Vandierendonck & De Bosschere

Program Ref Input Static Branches

164.gzip random 150
175.vpr route 598
176.gcc scilab 14,880
181.mcf ref 346
186.crafty ref 1,396
197.parser ref 1,974
252.eon kajiya 281
253.perlbmk splitmail 535 2,055
254.gap ref 566
255.vortex lendian2 1,603
256.bzip2 program 339
300.twolf ref 569

0

2

4

6

8

10

12

14

g
z
ip

v
p
r

g
c
c

m
c
f

c
ra

ft
y

p
a
rs

e
r

e
o
n

p
e
rl
b
m

k

g
a
p

v
o
rt

e
x

b
z
ip

2

tw
o
lf

a
v
e
ra

g
e

M
P

k
I

gshare
2bcgskew
RHSP
2FAR

Figure 6: Left: SPEC INT 2000 benchmarks, their inputs, and the number of static
branches executed. Right: The 2FAR predictor evaluated on the SPEC INT
2000 traces.

The smaller 2FAR predictor (32K bits) also spends half its budget on 2bcgskew, and
compared to the baseline, it halves the numbers of entries in the perceptron table down
to 16. In addition, it has a global history length of 25 (compared to 40 at 64K bits) and
benefits from one extra local history bit.

At 128Kbits, the predictor design scales to a global history of 48 bits. It keeps the 6bits
of fully redundant local history from the baseline, but seriously increases the entries in its
local history table to 512 entries. For a bit budget of 768Kbits we measure 2.26 MPkI with
a 2FAR configuration that additionally feeds the egskew outcome into the fusion predictor.

4.4 SPEC INT 2000

In this section we evaluate the branch predictor on traces which are commonly used in
branch prediction studies, i.e. exclusive evaluation on the SPEC CPU 2000 integer bench-
mark suite. For each of the benchmarks shown in Figure 6, we skip the first 50M conditional
branches and take statistics for the following 250M conditional branches. The resulting
traces are much longer than the CBP traces.

The results in Figure 6 show that the overall conclusion drawn from the CBP-traces—
40% improvement over gshare—holds for the longer SPEC INT 2000 traces, with 2FAR
performing 35% better than gshare on average. For completeness, we also show the indi-
vidual results for the 2bcgskew and the pure skewed perceptron predictor from section 4.1.
The 2FAR predictor outperforms the RHSP, although not by much, on all traces, except
for gzip.

5. Conclusion

Even though the optimized 2bcgskew and the RHSP both deliver very accurate predictions,
combining these predictors in a fusion-based prediction scheme outperforms their stand-
alone versions. Our 2bcgskew predictor fused by an alloyed redundant history skewed
perceptron predictor, which we call 2FAR, uses multiple predictions to obtain a more accu-

10

A 2bcgskew Predictor Fused by an Alloyed RHSP Predictor

rate overall prediction. The various predictions are delivered by a 2bcgskew predictor and
include the 2bcgskew prediction itself as well as the bias and hysteresis bits of its compo-
nent predictors. Together with some local history, the global history, and pseudo-tags these
predictions serve as input to our fusion predictor, which is an alloyed redundant history
skewed perceptron predictor.

The presented baseline 2FAR branch predictor implementation needs exactly (64K +
192) bits and reaches 3.15 MPkI, which is significantly better than 2bcgskew and RHSP.
In addition, we examined the sensitivity of the proposed 2FAR predictor to its various
design parameters. Finally, we demonstrate how the 2FAR design scales to a wide range of
predictor sizes, and prove its robustness to longer traces taken from SPEC INT 2000 suite,
which is frequently used in branch prediction studies.

Acknowledgements

Veerle Desmet is supported by a grant from the Flemish Institute for the Promotion of
the Scientific-Technological Research in the Industry (IWT). Hans Vandierendonck is a
postdoctoral researcher of the Fund for Scientific Research-Flanders (FWO). This research
was also funded by Ghent University. The authors are indebted to Toon De Pessemier for
his programming work.

References

[1] M. Evers, P.-Y. Chang, and Y. N. Patt, “Using hybrid branch predictors to improve branch
prediction accuracy in the presence of context switches,” in Proceedings of the 23rd Annual
International Symposium on Computer Architecture, pp. 3–11, 1996.

[2] S. McFarling, “Combining branch predictors,” Tech. Rep. TN-36, Digital Western Research
Laboratory, June 1993.

[3] A. Seznec, S. Felix, V. Krisnan, and Y. Sazeides, “Design tradeoffs for the Alpha EV8 conditional
branch predictor,” in Proceedings of the 29th Annual International Symposium on Computer
Architecture, pp. 295–306, May 2002.

[4] G. H. Loh and D. S. Henry, “Predicting conditional branches with fusion-based hybrid predic-
tors,” in Proceedings of the 11th International Conference on Parallel Architectures and Compi-
lation Techniques, pp. 165–176, Sept. 2002.

[5] D. A. Jiménez, “Neural methods for dynamic branch prediction,” ACM Transactions on Com-
puter Systems, vol. 20, pp. 369–397, Nov. 2002.

[6] P. Michaud, A. Seznec, and R. Uhlig, “Trading conflict and capacity aliasing in conditional
branch predictors,” in Proceedings of the 24th Annual International Symposium on Computer
Architecture, pp. 292–303, June 1997.

[7] A. Seznec, “An optimized 2bcgskew branch predictor,” Sept. 2003.

[8] A. Seznec, “Redundant history skewed perceptron predictors: Pushing limits on global history
branch predictors,” Tech. Rep. PI-1554, Institut de Recherche en Informatique et Systèmes
Aléatoires, May 2003.

[9] J. A. Fisher and S. M. Freudenberger, “Predicting conditional branch directions from previous
runs of a program,” in Proceedings of the 5th International Conference on Architectural Support
for Programming Languages and Operating Systems, pp. 85–95, Oct. 1992.

11

