Journal of Instruction-Level Parallelism 9 (2007) 1-13 Submitted 4/07; published 5/07

The L-TAGE Branch Predictor

André Seznec SEZNEC@IRISA.FR
IRISA/INRIA/HIPEAC
Campus de Beaulieu, 35042 Rennes Cedex, France

Abstract
The TAGE predictor, TAgged GEometric length predictor, was introduced in [25].

TAGE relies on several predictor tables indexed through independent functions of the
global branch/path history and the branch address. The TAGE predictor uses (partially)
tagged components as the PPM-like predictor [17]. It relies on (partial) match as the
prediction computation function. TAGE also uses geometric history length as the O-GEHL
predictor [20], i.e. , the set of used global history lengths forms a geometric series, i.e.,
L(j) = o/~'L(1). This allows to efficiently capture correlation on recent branch outcomes
as well as on very old branches.

For the realistic track of the 2nd Championship Branch Prediction (CBP-2), we pre-
sented a L-TAGE predictor consisting of a 13-component TAGE predictor combined with
a 256-entry loop predictor. This predictor achieves 3.314 misp/KI on the set of distributed
traces and won the competition.

1. Introduction

The L-TAGE predictor inherits from may studies that have been carried over the 25 last
years since the proposal of branch prediction in [26].

It is now widely recognized that a state-of-the-art conditional branch predictors [20, 22,
7, 8, 25] must exploit several different history lengths to capture correlation from very remote
branch outcomes as well as very recent branch history. The first move in this direction was
allowed by the proposal of the hybrid predictors in [16] and [4]. These predictors were
relying on metapredictors to select a prediction from a few different predictions. Several
different approaches were later proposed to compute the final prediction from predictors
featuring multiple components. E.g., majority vote [18], predictor fusion [15] and partial
tagging [3] have been shown to be competitive with meta-prediction.

The introduction of the neural based branch predictors [28, 9] provided a solution for
effectively combining several predictions. This approach allows to combine ten’s of pre-
dictions at a reasonable computation function cost through a (multiply) adder tree. It
initially suffered from several drawbacks that were progressively addressed. Latency issue
was addressed through ahead pipelining [7]; prediction accuracy was improved through dif-
ferent steps: mixing local and global history [10], using redundant history and skewing [19];
hardware logic complexity was reduced through MAC representation [19] or hashing [27].
Finally, it was shown that very remote branch correlation could be captured efficiently with
a limited number of predictor components. In particular, the O-GEHL predictor [21, 20]
was shown to be able to exploit very long global history lengths in the hundreds bits range
with a medium number (4 to 12) of predictor tables. Therefore most of the finalists of the

SEZNEC

1st Championship Branch Prediction in december 2004 [6, 2, 14, 11, 21] were using an adder
tree as the final prediction computation.

However the adder tree is not the only complexity effective final prediction computation
function. Prediction by Partial Match, PPM, was initially proposed in [1] as a limit pre-
dictor. It was refined as an implementable predictor in [17]. Building on O-GEHL and on
the PPM-like predictor [17], the TAgged GEoemtric history length predictor, TAGE, was
introduced in [25]. TAGE uses a geometric length series as OGEHL and uses partial tag
match as final prediction function. TAGE was shown to significantly outperform the previ-
ous state-of-the-art branch predictors, e.g. OGEHL, for storage budgets in the 32K-1Mbits
range. TAGE was therefore a natural candidate for designing a branch predictor for the
2nd Championship Branch Prediction.

The remainder of this article is organized as follows. We first recall the TAGE predictor
principles [25] and its main characteristics. Then, we describe the L-TAGE configuration
submitted to CBP-2 combining a loop predictor and a TAGE predictor. Section 4 discusses
implementation issues on the L-TAGE predictor. Section 5 presents simulation results for
the submitted L-TAGE predictor and a few other TAGE predictor configurations. Section 6
briefly reviews the related works that had major influences in the L-TAGE predictor propo-
sition and discusses a few tradeoffs that might influence the choice of a TAGE configuration
for an effective implementation.

2. The TAGE Conditional Branch Predictor

The TAGE predictor is derived from Michaud’s PPM-like tag-based branch predictor [17]
and uses geometric history lengths [20]. Figure 1 illustrates a TAGE predictor. The TAGE
predictor features a base predictor TO in charge of providing a basic prediction and a set
of (partially) tagged predictor components Ti. These tagged predictor components Ti,
1 <4 < M are indexed using different history lengths that form a geometric series, i.e,
L(i) = (int) (! % L(1) + 0.5).

Throughout this paper, the base predictor will be a simple PC-indexed 2-bit counter
bimodal table; in order to save storage space, the hysteresis bit is shared among several
counters as in [22].

An entry in a tagged component consists in a signed counter ctr which sign provides the
prediction, a (partial) tag and an unsigned useful counter u. Throughout this paper, u is a
2-bit counter and ctr is a 3-bit counter.

A Few Definitions and Notations The provider component is the matching component
with the longest history. The alternate prediction altpred is the prediction that would have
occurred if there had been a miss on the provider component.

If there is no hitting component then altpred is the default prediction.

2.1. Prediction Computation

At prediction time, the base predictor and the tagged components are accessed simultane-
ously. The base predictor provides a default prediction. The tagged components provide a
prediction only on a tag match.

THE L-TAGE BRANCH PREDICTOR

pc h[O:L(1)] pc h[O:L(2)] pc hO:L(3)] pc hO:L(4)]

mwy&wy Uwy&wn mwy&wg mwy&w@

pC
T% T1 T2 T3 T4
-gi predi tag iu predi tag iu predi tag iu predi tag iu
g8 L L L L
g8 L L L L
e | o | & | o

prediction

Figure 1: A 5-component TAGE predictor logical synopsis: a base predictor is backed with
several tagged predictor components indexed with increasing history lengths. On
an effective implementation, predictor selection would be performed through a
tree of multiplexors.

SEZNEC

In the general case, the overall prediction is provided by the hitting tagged predictor
component that uses the longest history, or in case of no matching tagged predictor com-
ponent, the default prediction is used.

However, we found that, on several applications, using the alternate prediction for newly
allocated entries is more efficient. Our experiments showed this property is essentially
global to the application and can be dynamically monitored through a single 4-bit counter
(USE_ALT_-ON_NA in the simulator). On the predictor an entry is classified as “newly
allocated” if its prediction counter is weak.

Therefore the prediction computation algorithm is as follows:

1. Find the matching component with the longest history

2. if (the prediction counter is not weak or USE_ALT ON_NA is negative) then the
prediction counter sign provides the prediction else the prediction is the alternate
prediction

2.2. Updating the TAGE Predictor

Updating the Useful Counter v The useful counter u of the provider component is
updated when the alternate prediction altpred is different from the final prediction pred.
The useful u counter is also used as an age counter. and is gracefully reset as described
below. We use an aging algorithm resetting alternatively the bits of the u counters.
As a small improvement on the updating presented in [25], after the reset, we flip the
signification of the bits u0 and ul of the useful counter till the next reset:

e reset No 2n-1: ul=0; until reset No 2n: u= 2ul+ul

e reset No 2n: u0 =0; until reset No 2n+1: u= 2u0+ul

e reset No 2n+1: ul=0; until reset No 2n+2: u= 2ul+ul

The period used in the presented predictor for this alternate resetting is 512K branches.
In [25], the proposed period was 256K branches for a 64Kbits predictor. In practice, we
found that the optimal period slightly increases with the storage budget of the predictor.

Updating the Prediction Counters The prediction counter of the provider component
is updated. When the useful counter of the provider component is null, the alternate
prediction is also updated.

Allocating Tagged Entries on Mispredictions On mispredictions at most one entry
is allocated.

If the provider component Ti is not the component using the longest history (i.e., i < M),
we try to allocate an entry on a predictor component Tk with 1 < k < M

The allocation process is described below.

The M-i u; counters are read from predictor components Tj, s < j < M. Then we apply
the following rules.

THE L-TAGE BRANCH PREDICTOR

(A) Avoiding ping-pong phenomenon: in the presented predictor, the search for a free
entry begins on table Tb, with b=i+1 with probability 1/2, b=i+2, with probability
1/4 and b=i+3 with probability 1/4.

The pseudo-random generator used in the presented predictor is a simple 2-bit counter.

(B) Initializing the allocated entry: An allocated entry is initialized with the prediction
counter set to weak correct. Counter u is initialized to 0 (i.e., strong not useful).

Rationale of the Update Policy The update policy is designed to minimize the foot-
print induced by a single (branch, history) pair. At most one tagged entry is allocated on
a misprediction. The selection of the entry to be allocated is managed through the useful
counter u. The value of u is positive y if there was some positive benefit from this entry in
the “recent” past, i.e., this entry has avoided a misprediction since its allocation or the last
two graceful resets of u counters.

Aliasing [29] has a major impact on simple predictors; some randomness in the allocation
policy is used to avoid ping-pong phenomena that sometimes slightly impact accuracy.

3. Characteristics of the CBP-2 L-TAGE predictor

The L-TAGE predictor combines a TAGE predictor and a loop predictor [6]. The prediction
is by default provided by the TAGE predictor apart when the loop prediction has high
confidence.

3.1. The Loop Predictor Component

The loop predictor simply tries to identify regular loops with constant number of iterations.

The loop predictor provides the global prediction when the loop has successively been
executed 3 times with the same number of iterations. The loop predictor used in the
submission features 256 entries and is 4-way associative.

Each entry consists of a past iteration count on 14 bits, a current iteration count on 14
bits, a partial tag on 14 bits, a confidence counter on 2 bits and an age counter on 8 bits,
i.e. 52 bits per entry. The loop predictor storage is therefore 13 Kbits.

Replacement policy is based on the age. An entry can be replaced only if its age counter
is null. On allocation, age is first set to 255. Age is decremented whenever the entry was
a possible replacement target and incremented when the entry is used and has provided a
valid prediction. Age is reset to zero whenever the branch is determined as not being a
regular loop.

3.2. The TAGE Predictor Component

3.2.1. Tag Width Tradeoff

Using a large tag width leads to waste part of the storage while using a too small tag width
leads to false tag match detections. Experiments showed that one can use narrower tags on
the tables with smaller history lengths as described in [25].

SEZNEC

3.2.2. Number of the TAGE Predictor Tables

For a 256 Kbits predictor, the best accuracy we found is achieved by a 13 components
TAGE predictor. However, in [25], we showed that high accuracy can be achieved with a
number of components as low as 5.

3.2.3. Dimensioning the TAGE Predictor Tables

We checked that, for a 256 Kbits predictor and for the benchmark traces of the champi-
onship, the predictor tables using long histories can be smaller than the tables using medium
histories. Tables using short histories can also be smaller than tables using medium histo-
ries.

3.2.4. Summary of the TAGE Component Characteristics

The TAGE predictor features 12 tagged components and a base bimodal predictor. Hys-
teresis bits are shared on the base predictor. Each entry in predictor table Ti features a Wi
bits wide tag, a 3-bit prediction counter and a 2-bit useful counter.

The presented predictor uses 4 as its minimum history length and 640 as its maximum
history length.

The characteristics of the TAGE predictor components are summarized in Table 1. The
included TAGE predictor features a total of 241.5 Kbits of prediction storage.

Base || T1,T2 | T3,T4 | T5 | T6 | T7 | T8T9 | T10 | T11 | T12

hist. length 0 4,6 10,16 | 25 40 64 | 101,160 | 254 | 403 | 640

entries pred. | 16K 1K 2K 2K | 2K | 1K 1K 1K | 0.5K | 0.5K
entries hyst. 4K

Tag width 7 8 9 10 11 12 13 14 15

storage (bits) | 20K 12K 26K | 28K | 30K | 16K | 17K | 18K | 9.5K | 10K

Table 1: Characteristics of the TAGE predictor components.

3.3. Information Used for Indexing the Branch Predictor
3.3.1. Path and Branch History

The predictor components are indexed using a hash function of the program counter, the
global branch history ghist (including non-conditional branches as in [20]) and a (limited)
16-bit path history phist consisting of 1 address bit per branch.

3.3.2. Discriminating Kernel and User Branchs

Kernel and user codes appear in the traces. In practice in the traces, we were able to
discrimate user code from kernal through the address range. In order to avoid history
pollution by kernel code, we use two sets of histories: the user history is updated only on
user branches, kernel history is updated on all branches. Such use of two different histories
for kernel and user branches was also independently proposed in [13].

THE L-TAGE BRANCH PREDICTOR

3.4. Total Predictor Storage Budget

Apart the prediction table storage, the predictor uses two 640 bits global history vectors,
two 16 bits path history vectors, a 4 bits USE_ALT_ON_NA counter, a 19 bits counter for
gracefully resetting the u counters, a 2-bit counter as pseudo-random generator and a 7-bit
counter WITHLOOP to determine the usefulness of the loop predictor. That is an extra
storage of 1,344 bits.

Therefore the predictor uses a total of 241.5 Kbits for the TAGE predictor tables, 13
Kbits for the loop predictor and 1,344 bits of extra storage, i.e., a total of 261,952 storage
bits.

4. Implementation Issues

4.1. The Prediction Response Time

Since the loop predictor features a small number of entries, the response time of the sub-
mitted predictor is dominated by the TAGE response time.

The prediction response time on most global history predictors involves three compo-
nents: the index computation, the predictor table read and the prediction computation
logic.

It was shown in [20] that very simple indexing functions using a single stage of 3-entry
exclusive-OR gates can be used for indexing the predictor components without significantly
impairing the prediction accuracy. In the simulation results presented in this paper, full
hash functions were used. However experiments using the 3-entry exclusive-OR index-
ing functions described in [20] showed a very similar total misprediction numbers (40.03
misp/KI).

The predictor table read delay depends on the size of tables. On the TAGE predictor,
the (partial) tags are needed for the prediction computation. The tag computation may
span during the index computation and table read without impacting the overall prediction
computation time. Complex hash functions may then be implemented.

The last stage in the prediction computation on the TAGE predictor consists in the tag
match followed by the prediction selection. The tag match computations are performed in
parallel on the tags flowing out from the tagged components.

Therefore, on an aggressively pipelined processor, the response time of the L-TAGE
predictor is unlikely to be a single cycle, but may be close to three cycles.

Therefore if the submitted L-TAGE predictor was to be implemented directly, it should
be used as an overriding predictor associated with a fast predictor (e.g. a bimodal table).

4.2. How to Address TAGE Predictor Response Time: Ahead Pipelining

In order to provide the prediction in time for next instruction block address generation,
ahead pipelining was proposed in [24] and detailed in [23] for global history/path branch
predictors. Therefore the access to the TAGE predictor can be ahead pipelined using the
same principle as described for the OGEHL predictor [20] and illustrated on Figure 2.
The prediction tables are read using the X-branch ahead program counter, the X-branch
ahead global history and the X-branch ahead path history. On each of the tables, 2X~!
adjacents entries are read. 2X~! possible predictions are computed in parallel and infor-

SEZNEC

T~
>
+
- 4 parallel prediction computations
Q
bc
A B C D

Figure 2: Principle of 3-block ahead branch prediction: information on branch A is used to
predict the output of branch C; information on block B and C is used to select
the final prediction.

mation on the last X-1 branchs (1 bit per intermediate branch) is used to select the final
prediction. Ahead pipelining induces some loss of prediction accuracy on medium size pre-
dictors, mostly due to aliasing on the base predictor. It is also necessary to checkpoint 2X 1
predictions to be able to resume without delay on a branch misprediction [24].

For transitions from user mode to kernel mode and vice-versa, we make the following
hypothesis: 1) The first two branches after a trap or an exception are predicted in a special
way using 1-block ahead information for the first one and 2-block ahead information for the
second one. 2) The first two branches after the return in the user code are predicted with
the ahead information available before the exception or the trap.

4.3. Other Implementation Issues
4.3.1. Number of Predictor Components

The complexity of a design, its silicon area and its power consumption increase with the
number of components. For a 256 Kbits predictor, the best accuracy we found is achieved
by a 14-component L-TAGE predictor. However, the TAGE predictor is also quite efficient
with a more limited number of components [25].

4.3.2. Sensitivity to History Length Parameters

It was shown in [25, 20] that the O-GEHL and TAGE predictors are very robust to the
choice of the parameters of the geometric series of history lengths. This property also

THE L-TAGE BRANCH PREDICTOR

stands for the presented predictor and for the set of traces used for CBP-2. Any minimum
value in the interval [2,5] and maximum value in the interval [300,1000] results in a total
misprediction number within 2% of the misprediction number of the submitted predictor.

4.3.3. Predictor Update Implementation Issues

The predictor update is performed after commit. Therefore the update logic is not on the
critical path.

On a correct prediction, at most two prediction counters ctr and the useful counter u
of the matching component must be updated, i.e., at most two predictor components are
accessed.

On a misprediction, a new entry is allocated on a tagged component. Therefore, a
prediction can potentially induce up to three accesses to the predictor on a misprediction,
i.e, read of all predictor tables at prediction time, read of all predictor tables at commit
time and write of (at most) two predictor tables at update time. However, the read at
commit time can be avoided: a few bits of information available at prediction time (the
numbers of the provider component,the alternate component, ctr and u values for these two
components and the nullity of all the u counters) can be checkpointed.

The predictor can therefore be implemented using dual-ported predictor components.
However, most updates on correct predictions concern already saturated counters and can
be avoided through checkpointing the information saturated ctr and saturated u. Using 2
or 4-bank structure for the predictor tables (as on EV8 predictor [22]) is a cost-effective
alternative to the use of dual-ported predictor tables.

4.3.4. Speculative Management

Simple Speculative History Management On predictor relying only on global his-
tory and/or path history such as TAGE, the speculative management of histories can be
implemented through circular buffers [12]. Restoring the branch history (respectively the
path history) consists of restoring the head pointer.

But Complex Iteration Count Management In a deeply pipelined processor, the
effectivity of a loop predictor depends on an accuratespeculative management of the it-
eration counters. This management appears as quite complex since several iterations of
the same loop can be inflight at the same time. However loop predictor is implemented
used on the Pentium-M. Therefore this complexity is considered as manageable by a major
microprocessor vendor.

5. Predictor Accuracy

Results per application on the distributed set of traces are displayed in Table 2 for the
submitted L-TAGE predictor.

In order to illustrate the potential of the TAGE predictor, we also present simulation re-
sults for TAGE predictors featuring simpler hardware complexity: the included 241,5 Kbits
TAGE component (no loop pred.), a 256 Kbits 13-component TAGE predictor (13C) and a
256 Kbits 8-component TAGE predictor (8C). Finally, as the TAGE predictor can deliver

SEZNEC

prediction in time provided that ahead pipelining is used, we also illustrate simulations
results for a 3-branch ahead 256 Kbits TAGE predictor (8C-Ahead).

The average accuracy of the submitted predictor is 3.314 misp/KI on the distributed
set of traces. When the loop predictor is turned off, the 241,5 Kbits TAGE component
achieves 3.368 misp/KI. When the total of the 256 Kbits are affected to the 13 components
of TAGE, 3.357 misp/KI is achieved. A 256 Kbits 8-component TAGE predictor achieves
3.446 misp/KI while a 256 Kbits 3-branch ahead TAGE predictor achieves 3.552 misp/KI.

It can be noted that the benefit of the loop predictor is essentially marginal apart on
164.gzip. Simulations on other sets of traces confirm that, only very rare applications
effectively benefit from the loop predictor, therefore associating the loop predictor with
TAGE is probably not worth the complexity for a real implementation.

Using a medium number of components (8) in TAGE instead of the best number of
components (13) impacts the accuracy only slightly: for the final designer the choice of the
number of components will be a tradeoff between the extra complexity induced by using
more predictor tables and a small accuracy loss. Finally, ahead pipelining does not impair
very significantly the predictor accuracy and can therefore be considered for delivering the
prediction in time.

164 175 176 181 186 197 201 202 205 209
L-TAGE 10.074 | 9.010 | 3.222 | 9.049 | 2.442 | 5.152 | 5.712 | 0.371 | 0.346 | 2.339
no loop pred. || 10.789 | 9.015 | 3.263 | 9.055 | 2.445 | 5.156 | 5.868 | 0.372 | 0.352 | 2.347
13C 10.781 | 8.990 | 3.224 | 9.006 | 2.415 | 5.141 | 5.853 | 0.368 | 0.349 | 2.345
8C 10.615 | 9.0.80 | 3.369 | 9.446 | 2.534 | 5.352 | 5.914 | 0.379 | 0.496 | 2.368
8C-Ahead 10.854 | 9.384 | 3.627 | 9.688 | 2.728 | 5.438 | 6.024 | 0.406 | 0.515 | 2.439

213 222 227 228 252 253 254 255 256 300
L-TAGE 1.080 | 1.068 | 0.386 | 0.592 | 0.219 | 0.311 | 1.460 | 0.139 | 0.036 | 13.284
no loop pred. || 1.121 | 1.110 | 0.399 | 0.594 | 0.219 | 0.325 | 1.464 | 0.141 | 0.041 | 13.288
13C 1.119 | 1.114 | 0.397 | 0.590 | 0.218 | 0.325 | 1.547 | 0.141 | 0.041 | 13.269
8C 1.147 | 1.146 | 0.542 | 0.633 | 0.240 | 0.378 | 1.513 | 0.145 | 0.041 | 13.528
8C-Ahead 1.195 | 1.188 | 0.571 | 0.690 | 0.246 | 0.398 | 1.581 | 0.169 | 0.043 | 13.868

Table 2: Per benchmark accuracy in misp/KI.

6. Conclusion

The use of multiple global history lengths in a single branch predictor was initially intro-
duced in [16], then it was refined by Evers et al. [5] and further appeared in many proposals.
Using tagged predictors was suggested for the PPM predictor from Chen et al.[1]. A first
PPM-like implementable version was proposed in [17]. TAGE enhances this first proposition
by an improved update policy. The TAGE predictor directly inherits the use of geomet-
ric history length series from the OGEHL predictor [20], but is more storage-effective for
realistic storage budgets. Using only a very limited storage, the loop predictor allows to
capture some behaviors that are not captured by the TAGE predictor.

10

THE L-TAGE BRANCH PREDICTOR

The CBP-2 L-TAGE predictor can be directly adapted to hardware implementation
as a multi-cycle overriding predictor backing a fast single-cycle predictor (e.g. a bimodal
predictor) and achieves very high accuracy.

This presented configuration was submitted because it achieves very high accuracy while
it could be implemented in hardware. However for an effective hardware implementation,
the hardware complexity of the submitted L-TAGE predictor should be compared with other
TAGE-based predictor solutions evaluated in Section 5. These solutions might be considered
as more cost-effective tradeoffs between hardware complexity and predictor performance;
in particular:

e The complexity of a real hardware loop predictor is higher than only reflected by its
storage budget; the management of the speculative iteration counts might be a major
source of hardware logic complexity. The small accuracy benefit brought by the loop
predictor is probably not worth this extra complexity.

e The number of components in the submitted predictor is high: using a smaller number
of components, e.g. 8, might be a better design tradeoff.

e The L-TAGE predictor would have a multicycle response time: using a slightly less
accurate but ahead pipelined TAGE predictor might allow the design of an overall
more efficient instruction fetch front-end [23].

Acknowledgements

This work was partially supported by an Intel research grant, an Intel research equipment
donation and by the European Commission in the context of the SARC integrated project
#27648 (FP6).

References

[1] I.-C.K. Chen, J.T. Coffey, and T.N. Mudge. Analysis of branch prediction via data
compression. In Proceedings of the 7th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, October 1996.

[2] V. Desmet, H. Vandierendonck, and K. De Bosschere. 2far: A 2bcgskew predictor
fused by an alloyed redundant history skewed perceptron branch predictor. Journal of
Instruction Level Parallelism (hitp://www.jilp.org/vol7), 2005.

[3] A. N. Eden and T.N. Mudge. The YAGS branch predictor. In Proceedings of the 31st
Annual International Symposium on Microarchitecture, Dec 1998.

[4] M. Evers, P.-Y. Chang, and Y.N. Patt. Using hybrid branch predictors to improve
branch prediction accuracy in the presence of context switches. In Proceedings of the
23rd Annual International Symposium on Computer Architecture, May 1996.

[6] M. Evers, P.Y. Chang, and Y.N. Patt. Using hybrid branch predictors to improve
branch prediction accuracy in the presence of context switches. In 23™¢ Annual Inter-
national Symposium on Computer Architecture, pages 3—11, 1996.

11

[6]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

SEZNEC

H. Gao and H. Zhou. Adaptive information processing: An effective way to improve per-
ceptron predictors. Journal of Instruction Level Parallelism (hitp://www.jilp.org/vol7),
April 2005.

D. Jiménez. Fast path-based neural branch prediction. In Proceedings of the 36th
Annual IEEE/ACM International Symposium on Microarchitecture, dec 2003.

D. Jiménez. Piecewise linear branch prediction. In Proceedings of the 32nd Annual
International Symposium on Computer Architecture, june 2005.

D. Jiménez and C. Lin. Dynamic branch prediction with perceptrons. In Proceedings
of the Seventh International Symposium on High Perform ance Computer Architecture,
2001.

D. Jiménez and C. Lin. Neural methods for dynamic branch prediction. ACM Trans-
actions on Computer Systems, November 2002.

D.A. Jiménez. Idealized piecewise linear branch prediction. Journal of Instruction
Level Parallelism (http://www.jilp.org/vol7), April 2005.

S. Jourdan, T. Hsing, J. Stark, and Y.N. Patt. The effects of mispredicted-path exe-
cution on branch prediction structures. In Proceedings of the International Conference
on Parallel Architectures and Compilation Techniques, October 1996.

T. Li, L.K. John, A. Sivasubramaniam, N. Vijaykrishnan, and J. Rubio. Os-aware
branch prediction: Improving microprocessor control flow prediction for operating sys-
tems. IEEE Trans. Computers, 56(1):2-17, 2007.

G. Loh. Deconstructing the frankenpredictor for implementable branch predictors.
Journal of Instruction Level Parallelism (http://www.jilp.org/vol7), April 2005.

G.H. Loh and D.S. Henry. Predicting conditional branches with fusion-based hybrid
predictors. In Proceedings of the 11th Conference on Parallel Architectures and Com-
pilation Techniques, 2002.

S. McFarling. Combining branch predictors. TN 36, DEC WRL, June 1993.

P. Michaud. A ppm-like, tag-based predictor. Journal of Instruction Level Parallelism
(http://www.jilp.org/vol7), April 2005.

P. Michaud, A. Seznec, and R. Uhlig. Trading conflict and capacity aliasing in condi-
tional branch predictors. In Proceedings of the 24th Annual International Symposium
on Computer Architecture (ISCA-97), June 1997.

A. Seznec. Revisiting the perceptron predictor. Technical Report PI-1620, TRISA
Report, May 2004.

A. Seznec. Analysis of the o-gehl branch predictor. In Proceedings of the 32nd Annual
International Symposium on Computer Architecture, june 2005.

12

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

THE L-TAGE BRANCH PREDICTOR

A. Seznec. Genesis of the o-gehl branch predictor. Journal of Instruction Level Paral-
lelism (http://www.jilp.org/vol7), April 2005.

A. Seznec, S. Felix, V. Krishnan, and Y. Sazeidés. Design tradeoffs for the ev8 branch
predictor. In Proceedings of the 29th Annual International Symposium on Computer
Architecture, 2002.

A. Seznec and A. Fraboulet. Effective ahead pipelining of the instruction addres gen-
erator. In Proceedings of the 30th Annual International Symposium on Computer Ar-
chitecture, June 2003.

A. Seznec, S. Jourdan, P. Sainrat, and P. Michaud. Multiple-block ahead branch pre-
dictors. In Architectural Support for Programming Languages and Operating Systems
(ASPLOS-VII), pages 116-127, 1996.

A. Seznec and P. Michaud. A case for (partially)-tagged geometric history length
predictors. Journal of Instruction Level Parallelism (http://www.jilp.org/vol7), April
2006.

J.E. Smith. A study of branch prediction strategies. In Proceedings of the 8th Annual
International Symposium on Computer Architecture, 1981.

D. Tarjan and K. Skadron. Revisiting the perceptron predictor again. Technical Report
CS-2004-28, University of Virginia, September 2004.

L. N. Vintan and M. Iridon. Towards a high performance neural branch predictor. In
IJCONN’99. International Joint Conference on Neural Networks. Proceedings., 1999.

C. Young, N. Gloy, and M.D. Smith. A comparative analysis of schemes for correlated
branch prediction. In Proceedings of the 22nd Annual International Symposium on
Computer Architecture, June 1995.

13

