The L-TAGE Branch Predictor

André Seznec SEZNEC@IRISA.FR

IRISA/INRIA/HIPEAC Campus de Beaulieu, 35042 Rennes Cedex, France

Abstract

The TAGE predictor, TAgged GEometric length predictor, was introduced in [25].

TAGE relies on several predictor tables indexed through independent functions of the global branch/path history and the branch address. The TAGE predictor uses (partially) tagged components as the PPM-like predictor [17]. It relies on (partial) match as the prediction computation function. TAGE also uses geometric history length as the O-GEHL predictor [20], i.e. , the set of used global history lengths forms a geometric series, i.e., $L(j) = \alpha^{j-1}L(1)$. This allows to efficiently capture correlation on recent branch outcomes as well as on very old branches.

For the realistic track of the 2nd Championship Branch Prediction (CBP-2), we presented a L-TAGE predictor consisting of a 13-component TAGE predictor combined with a 256-entry loop predictor. This predictor achieves 3.314 misp/KI on the set of distributed traces and won the competition.

1. Introduction

The L-TAGE predictor inherits from may studies that have been carried over the 25 last years since the proposal of branch prediction in [26].

It is now widely recognized that a state-of-the-art conditional branch predictors [20, 22, 7, 8, 25] must exploit several different history lengths to capture correlation from very remote branch outcomes as well as very recent branch history. The first move in this direction was allowed by the proposal of the hybrid predictors in [16] and [4]. These predictors were relying on metapredictors to select a prediction from a few different predictions. Several different approaches were later proposed to compute the final prediction from predictors featuring multiple components. E.g., majority vote [18], predictor fusion [15] and partial tagging [3] have been shown to be competitive with meta-prediction.

The introduction of the neural based branch predictors [28, 9] provided a solution for effectively combining several predictions. This approach allows to combine ten's of predictions at a reasonable computation function cost through a (multiply) adder tree. It initially suffered from several drawbacks that were progressively addressed. Latency issue was addressed through ahead pipelining [7]; prediction accuracy was improved through different steps: mixing local and global history [10], using redundant history and skewing [19]; hardware logic complexity was reduced through MAC representation [19] or hashing [27]. Finally, it was shown that very remote branch correlation could be captured efficiently with a limited number of predictor components. In particular, the O-GEHL predictor [21, 20] was shown to be able to exploit very long global history lengths in the hundreds bits range with a medium number (4 to 12) of predictor tables. Therefore most of the finalists of the

1st Championship Branch Prediction in december 2004 [6, 2, 14, 11, 21] were using an adder tree as the final prediction computation.

However the adder tree is not the only complexity effective final prediction computation function. Prediction by Partial Match, PPM, was initially proposed in [1] as a limit predictor. It was refined as an implementable predictor in [17]. Building on O-GEHL and on the PPM-like predictor [17], the TAgged GEoemtric history length predictor, TAGE, was introduced in [25]. TAGE uses a geometric length series as OGEHL and uses partial tag match as final prediction function. TAGE was shown to significantly outperform the previous state-of-the-art branch predictors, e.g. OGEHL, for storage budgets in the 32K-1Mbits range. TAGE was therefore a natural candidate for designing a branch predictor for the 2nd Championship Branch Prediction.

The remainder of this article is organized as follows. We first recall the TAGE predictor principles [25] and its main characteristics. Then, we describe the L-TAGE configuration submitted to CBP-2 combining a loop predictor and a TAGE predictor. Section 4 discusses implementation issues on the L-TAGE predictor. Section 5 presents simulation results for the submitted L-TAGE predictor and a few other TAGE predictor configurations. Section 6 briefly reviews the related works that had major influences in the L-TAGE predictor proposition and discusses a few tradeoffs that might influence the choice of a TAGE configuration for an effective implementation.

2. The TAGE Conditional Branch Predictor

The TAGE predictor is derived from Michaud's PPM-like tag-based branch predictor [17] and uses geometric history lengths [20]. Figure 1 illustrates a TAGE predictor. The TAGE predictor features a base predictor T0 in charge of providing a basic prediction and a set of (partially) tagged predictor components Ti. These tagged predictor components Ti, $1 \le i \le M$ are indexed using different history lengths that form a geometric series, i.e, $L(i) = (int)(\alpha^{i-1} * L(1) + 0.5)$.

Throughout this paper, the base predictor will be a simple PC-indexed 2-bit counter bimodal table; in order to save storage space, the hysteresis bit is shared among several counters as in [22].

An entry in a tagged component consists in a signed counter ctr which sign provides the prediction, a (partial) tag and an unsigned useful counter u. Throughout this paper, u is a 2-bit counter and ctr is a 3-bit counter.

A Few Definitions and Notations The provider component is the matching component with the longest history. The alternate prediction altered is the prediction that would have occurred if there had been a miss on the provider component.

If there is no hitting component then *altpred* is the default prediction.

2.1. Prediction Computation

At prediction time, the base predictor and the tagged components are accessed simultaneously. The base predictor provides a default prediction. The tagged components provide a prediction only on a tag match.

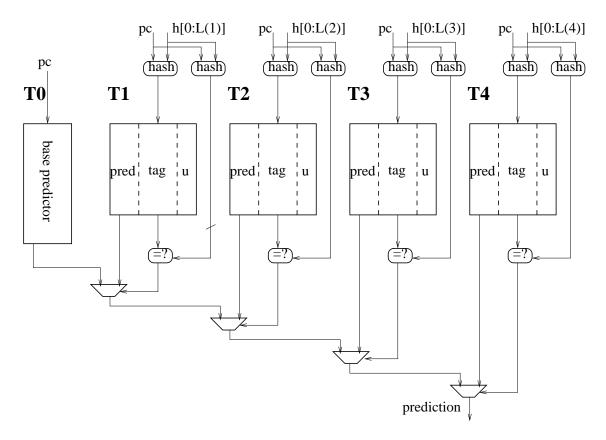


Figure 1: A 5-component TAGE predictor logical synopsis: a base predictor is backed with several tagged predictor components indexed with increasing history lengths. On an effective implementation, predictor selection would be performed through a tree of multiplexors.

In the general case, the overall prediction is provided by the hitting tagged predictor component that uses the longest history, or in case of no matching tagged predictor component, the default prediction is used.

However, we found that, on several applications, using the alternate prediction for newly allocated entries is more efficient. Our experiments showed this property is essentially global to the application and can be dynamically monitored through a single 4-bit counter (*USE_ALT_ON_NA* in the simulator). On the predictor an entry is classified as "newly allocated" if its prediction counter is weak.

Therefore the prediction computation algorithm is as follows:

- 1. Find the matching component with the longest history
- 2. if (the prediction counter is not weak or USE_ALT_ON_NA is negative) then the prediction counter sign provides the prediction else the prediction is the alternate prediction

2.2. Updating the TAGE Predictor

Updating the Useful Counter u The useful counter u of the provider component is updated when the alternate prediction *altered* is different from the final prediction *pred*.

The useful u counter is also used as an age counter. and is gracefully reset as described below. We use an aging algorithm resetting alternatively the bits of the u counters.

As a small improvement on the updating presented in [25], after the reset, we flip the signification of the bits u0 and u1 of the useful counter till the next reset:

- reset No 2n-1: u1=0; until reset No 2n: u=2u1+u0
- reset No 2n: u0 = 0; until reset No 2n+1: u = 2u0+u1
- reset No 2n+1: u1=0; until reset No 2n+2: u=2u1+u0

The period used in the presented predictor for this alternate resetting is 512K branches. In [25], the proposed period was 256K branches for a 64Kbits predictor. In practice, we found that the optimal period slightly increases with the storage budget of the predictor.

Updating the Prediction Counters The prediction counter of the provider component is updated. When the useful counter of the provider component is null, the alternate prediction is also updated.

Allocating Tagged Entries on Mispredictions On mispredictions at most one entry is allocated.

If the provider component Ti is not the component using the longest history (i.e., i < M), we try to allocate an entry on a predictor component Tk with $i < k \le M$

The allocation process is described below.

The M-i u_j counters are read from predictor components Tj, $i < j \le M$. Then we apply the following rules.

(A) Avoiding ping-pong phenomenon: in the presented predictor, the search for a free entry begins on table Tb, with b=i+1 with probability 1/2, b=i+2, with probability 1/4 and b=i+3 with probability 1/4.

The pseudo-random generator used in the presented predictor is a simple 2-bit counter.

(B) Initializing the allocated entry: An allocated entry is initialized with the prediction counter set to weak correct. Counter u is initialized to 0 (i.e., strong not useful).

Rationale of the Update Policy The update policy is designed to minimize the footprint induced by a single (branch, history) pair. At most one tagged entry is allocated on a misprediction. The selection of the entry to be allocated is managed through the useful counter u. The value of u is positive y if there was some positive benefit from this entry in the "recent" past, i.e., this entry has avoided a misprediction since its allocation or the last two graceful resets of u counters.

Aliasing [29] has a major impact on simple predictors; some randomness in the allocation policy is used to avoid ping-pong phenomena that sometimes slightly impact accuracy.

3. Characteristics of the CBP-2 L-TAGE predictor

The L-TAGE predictor combines a TAGE predictor and a loop predictor [6]. The prediction is by default provided by the TAGE predictor apart when the loop prediction has high confidence.

3.1. The Loop Predictor Component

The loop predictor simply tries to identify regular loops with constant number of iterations.

The loop predictor provides the global prediction when the loop has successively been executed 3 times with the same number of iterations. The loop predictor used in the submission features 256 entries and is 4-way associative.

Each entry consists of a past iteration count on 14 bits, a current iteration count on 14 bits, a partial tag on 14 bits, a confidence counter on 2 bits and an age counter on 8 bits, i.e. 52 bits per entry. The loop predictor storage is therefore 13 Kbits.

Replacement policy is based on the age. An entry can be replaced only if its age counter is null. On allocation, age is first set to 255. Age is decremented whenever the entry was a possible replacement target and incremented when the entry is used and has provided a valid prediction. Age is reset to zero whenever the branch is determined as not being a regular loop.

3.2. The TAGE Predictor Component

3.2.1. Tag Width Tradeoff

Using a large tag width leads to waste part of the storage while using a too small tag width leads to false tag match detections. Experiments showed that one can use narrower tags on the tables with smaller history lengths as described in [25].

3.2.2. Number of the TAGE Predictor Tables

For a 256 Kbits predictor, the best accuracy we found is achieved by a 13 components TAGE predictor. However, in [25], we showed that high accuracy can be achieved with a number of components as low as 5.

3.2.3. Dimensioning the TAGE Predictor Tables

We checked that, for a 256 Kbits predictor and for the benchmark traces of the championship, the predictor tables using long histories can be smaller than the tables using medium histories. Tables using short histories can also be smaller than tables using medium histories.

3.2.4. Summary of the TAGE Component Characteristics

The TAGE predictor features 12 tagged components and a base bimodal predictor. Hysteresis bits are shared on the base predictor. Each entry in predictor table Ti features a Wi bits wide tag, a 3-bit prediction counter and a 2-bit useful counter.

The presented predictor uses 4 as its minimum history length and 640 as its maximum history length.

The characteristics of the TAGE predictor components are summarized in Table 1. The included TAGE predictor features a total of 241.5 Kbits of prediction storage.

	Base	T1,T2	T3,T4	T5	T6	T7	T8,T9	T10	T11	T12
hist. length	0	4,6	$10,\!16$	25	40	64	101,160	254	403	640
entries pred.	16K	1K	2K	2K	2K	1K	1K	1K	0.5K	0.5K
entries hyst.	4K									
Tag width		7	8	9	10	11	12	13	14	15
storage (bits)	20K	12K	26K	28K	30K	16K	17K	18K	9.5K	10K

Table 1: Characteristics of the TAGE predictor components.

3.3. Information Used for Indexing the Branch Predictor

3.3.1. Path and Branch History

The predictor components are indexed using a hash function of the program counter, the global branch history *ghist* (including non-conditional branches as in [20]) and a (limited) 16-bit path history *phist* consisting of 1 address bit per branch.

3.3.2. Discriminating Kernel and User Branchs

Kernel and user codes appear in the traces. In practice in the traces, we were able to discrimate user code from kernal through the address range. In order to avoid history pollution by kernel code, we use two sets of histories: the user history is updated only on user branches, kernel history is updated on all branches. Such use of two different histories for kernel and user branches was also independently proposed in [13].

3.4. Total Predictor Storage Budget

Apart the prediction table storage, the predictor uses two 640 bits global history vectors, two 16 bits path history vectors, a 4 bits USE_ALT_ON_NA counter, a 19 bits counter for gracefully resetting the *u* counters, a 2-bit counter as pseudo-random generator and a 7-bit counter WITHLOOP to determine the usefulness of the loop predictor. That is an extra storage of 1,344 bits.

Therefore the predictor uses a total of 241.5 Kbits for the TAGE predictor tables, 13 Kbits for the loop predictor and 1,344 bits of extra storage, i.e., a total of 261,952 storage bits.

4. Implementation Issues

4.1. The Prediction Response Time

Since the loop predictor features a small number of entries, the response time of the submitted predictor is dominated by the TAGE response time.

The prediction response time on most global history predictors involves three components: the index computation, the predictor table read and the prediction computation logic.

It was shown in [20] that very simple indexing functions using a single stage of 3-entry exclusive-OR gates can be used for indexing the predictor components without significantly impairing the prediction accuracy. In the simulation results presented in this paper, full hash functions were used. However experiments using the 3-entry exclusive-OR indexing functions described in [20] showed a very similar total misprediction numbers (+0.03 misp/KI).

The predictor table read delay depends on the size of tables. On the TAGE predictor, the (partial) tags are needed for the prediction computation. The tag computation may span during the index computation and table read without impacting the overall prediction computation time. Complex hash functions may then be implemented.

The last stage in the prediction computation on the TAGE predictor consists in the tag match followed by the prediction selection. The tag match computations are performed in parallel on the tags flowing out from the tagged components.

Therefore, on an aggressively pipelined processor, the response time of the L-TAGE predictor is unlikely to be a single cycle, but may be close to three cycles.

Therefore if the submitted L-TAGE predictor was to be implemented directly, it should be used as an overriding predictor associated with a fast predictor (e.g. a bimodal table).

4.2. How to Address TAGE Predictor Response Time: Ahead Pipelining

In order to provide the prediction in time for next instruction block address generation, ahead pipelining was proposed in [24] and detailed in [23] for global history/path branch predictors. Therefore the access to the TAGE predictor can be ahead pipelined using the same principle as described for the OGEHL predictor [20] and illustrated on Figure 2.

The prediction tables are read using the X-branch ahead program counter, the X-branch ahead global history and the X-branch ahead path history. On each of the tables, 2^{X-1} adjacents entries are read. 2^{X-1} possible predictions are computed in parallel and infor-

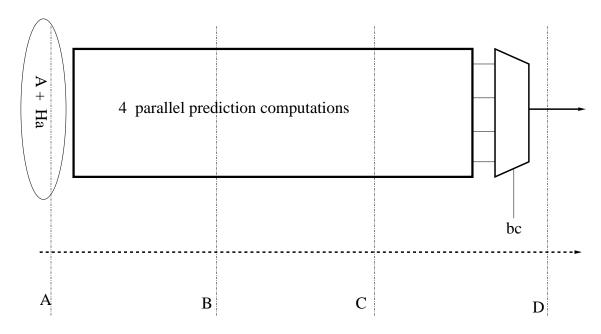


Figure 2: Principle of 3-block ahead branch prediction: information on branch A is used to predict the output of branch C; information on block B and C is used to select the final prediction.

mation on the last X-1 branchs (1 bit per intermediate branch) is used to select the final prediction. Ahead pipelining induces some loss of prediction accuracy on medium size predictors, mostly due to aliasing on the base predictor. It is also necessary to checkpoint 2^{X-1} predictions to be able to resume without delay on a branch misprediction [24].

For transitions from user mode to kernel mode and vice-versa, we make the following hypothesis: 1) The first two branches after a trap or an exception are predicted in a special way using 1-block ahead information for the first one and 2-block ahead information for the second one. 2) The first two branches after the return in the user code are predicted with the ahead information available before the exception or the trap.

4.3. Other Implementation Issues

4.3.1. Number of Predictor Components

The complexity of a design, its silicon area and its power consumption increase with the number of components. For a 256 Kbits predictor, the best accuracy we found is achieved by a 14-component L-TAGE predictor. However, the TAGE predictor is also quite efficient with a more limited number of components [25].

4.3.2. Sensitivity to History Length Parameters

It was shown in [25, 20] that the O-GEHL and TAGE predictors are very robust to the choice of the parameters of the geometric series of history lengths. This property also

stands for the presented predictor and for the set of traces used for CBP-2. Any minimum value in the interval [2,5] and maximum value in the interval [300,1000] results in a total misprediction number within 2% of the misprediction number of the submitted predictor.

4.3.3. Predictor Update Implementation Issues

The predictor update is performed after commit. Therefore the update logic is not on the critical path.

On a correct prediction, at most two prediction counters ctr and the useful counter u of the matching component must be updated, i.e., at most two predictor components are accessed.

On a misprediction, a new entry is allocated on a tagged component. Therefore, a prediction can potentially induce up to three accesses to the predictor on a misprediction, i.e, read of all predictor tables at prediction time, read of all predictor tables at commit time and write of (at most) two predictor tables at update time. However, the read at commit time can be avoided: a few bits of information available at prediction time (the numbers of the provider component, the alternate component, ctr and u values for these two components and the nullity of all the u counters) can be checkpointed.

The predictor can therefore be implemented using dual-ported predictor components. However, most updates on correct predictions concern already saturated counters and can be avoided through checkpointing the information saturated ctr and saturated u. Using 2 or 4-bank structure for the predictor tables (as on EV8 predictor [22]) is a cost-effective alternative to the use of dual-ported predictor tables.

4.3.4. Speculative Management

Simple Speculative History Management On predictor relying only on global history and/or path history such as TAGE, the speculative management of histories can be implemented through circular buffers [12]. Restoring the branch history (respectively the path history) consists of restoring the head pointer.

But Complex Iteration Count Management In a deeply pipelined processor, the effectivity of a loop predictor depends on an accuratespeculative management of the iteration counters. This management appears as quite complex since several iterations of the same loop can be inflight at the same time. However loop predictor is implemented used on the Pentium-M. Therefore this complexity is considered as manageable by a major microprocessor vendor.

5. Predictor Accuracy

Results per application on the distributed set of traces are displayed in Table 2 for the submitted L-TAGE predictor.

In order to illustrate the potential of the TAGE predictor, we also present simulation results for TAGE predictors featuring simpler hardware complexity: the included 241,5 Kbits TAGE component (no loop pred.), a 256 Kbits 13-component TAGE predictor (13C) and a 256 Kbits 8-component TAGE predictor (8C). Finally, as the TAGE predictor can deliver

prediction in time provided that ahead pipelining is used, we also illustrate simulations results for a 3-branch ahead 256 Kbits TAGE predictor (8C-Ahead).

The average accuracy of the submitted predictor is **3.314 misp/KI** on the distributed set of traces. When the loop predictor is turned off, the 241,5 Kbits TAGE component achieves 3.368 misp/KI. When the total of the 256 Kbits are affected to the 13 components of TAGE, 3.357 misp/KI is achieved. A 256 Kbits 8-component TAGE predictor achieves 3.446 misp/KI while a 256 Kbits 3-branch ahead TAGE predictor achieves 3.552 misp/KI.

It can be noted that the benefit of the loop predictor is essentially marginal apart on 164.gzip. Simulations on other sets of traces confirm that, only very rare applications effectively benefit from the loop predictor, therefore associating the loop predictor with TAGE is probably not worth the complexity for a real implementation.

Using a medium number of components (8) in TAGE instead of the best number of components (13) impacts the accuracy only slightly: for the final designer the choice of the number of components will be a tradeoff between the extra complexity induced by using more predictor tables and a small accuracy loss. Finally, ahead pipelining does not impair very significantly the predictor accuracy and can therefore be considered for delivering the prediction in time.

	164	175	176	181	186	197	201	202	205	209
L-TAGE	10.074	9.010	3.222	9.049	2.442	5.152	5.712	0.371	0.346	2.339
no loop pred.	10.789	9.015	3.263	9.055	2.445	5.156	5.868	0.372	0.352	2.347
13C	10.781	8.990	3.224	9.006	2.415	5.141	5.853	0.368	0.349	2.345
8C	10.615	9.0.80	3.369	9.446	2.534	5.352	5.914	0.379	0.496	2.368
8C-Ahead	10.854	9.384	3.627	9.688	2.728	5.438	6.024	0.406	0.515	2.439
	213	222	227	228	252	253	254	255	256	300
L-TAGE	1.080	1.068	0.386	0.592	0.219	0.311	1.460	0.139	0.036	13.284
no loop pred.	1.121	1.110	0.399	0.594	0.219	0.325	1.464	0.141	0.041	13.288
13C	1.119	1.114	0.397	0.590	0.218	0.325	1.547	0.141	0.041	13.269
8C	1.147	1.146	0.542	0.633	0.240	0.378	1.513	0.145	0.041	13.528
8C-Ahead	1.195	1.188	0.571	0.690	0.246	0.398	1.581	0.169	0.043	13.868

Table 2: Per benchmark accuracy in misp/KI.

6. Conclusion

The use of multiple global history lengths in a single branch predictor was initially introduced in [16], then it was refined by Evers et al. [5] and further appeared in many proposals. Using tagged predictors was suggested for the PPM predictor from Chen et al.[1]. A first PPM-like implementable version was proposed in [17]. TAGE enhances this first proposition by an improved update policy. The TAGE predictor directly inherits the use of geometric history length series from the OGEHL predictor [20], but is more storage-effective for realistic storage budgets. Using only a very limited storage, the loop predictor allows to capture some behaviors that are not captured by the TAGE predictor.

The CBP-2 L-TAGE predictor can be directly adapted to hardware implementation as a multi-cycle overriding predictor backing a fast single-cycle predictor (e.g. a bimodal predictor) and achieves very high accuracy.

This presented configuration was submitted because it achieves very high accuracy while it could be implemented in hardware. However for an effective hardware implementation, the hardware complexity of the submitted L-TAGE predictor should be compared with other TAGE-based predictor solutions evaluated in Section 5. These solutions might be considered as more cost-effective tradeoffs between hardware complexity and predictor performance; in particular:

- The complexity of a real hardware loop predictor is higher than only reflected by its storage budget; the management of the speculative iteration counts might be a major source of hardware logic complexity. The small accuracy benefit brought by the loop predictor is probably not worth this extra complexity.
- The number of components in the submitted predictor is high: using a smaller number of components, e.g. 8, might be a better design tradeoff.
- The L-TAGE predictor would have a multicycle response time: using a slightly less accurate but ahead pipelined TAGE predictor might allow the design of an overall more efficient instruction fetch front-end [23].

Acknowledgements

This work was partially supported by an Intel research grant, an Intel research equipment donation and by the European Commission in the context of the SARC integrated project #27648 (FP6).

References

- [1] I.-C.K. Chen, J.T. Coffey, and T.N. Mudge. Analysis of branch prediction via data compression. In *Proceedings of the 7th International Conference on Architectural Support for Programming Languages and Operating Systems*, October 1996.
- [2] V. Desmet, H. Vandierendonck, and K. De Bosschere. 2far: A 2bcgskew predictor fused by an alloyed redundant history skewed perceptron branch predictor. *Journal of Instruction Level Parallelism (http://www.jilp.org/vol7)*, 2005.
- [3] A. N. Eden and T.N. Mudge. The YAGS branch predictor. In *Proceedings of the 31st Annual International Symposium on Microarchitecture*, Dec 1998.
- [4] M. Evers, P.-Y. Chang, and Y.N. Patt. Using hybrid branch predictors to improve branch prediction accuracy in the presence of context switches. In *Proceedings of the 23rd Annual International Symposium on Computer Architecture*, May 1996.
- [5] M. Evers, P.Y. Chang, and Y.N. Patt. Using hybrid branch predictors to improve branch prediction accuracy in the presence of context switches. In 23rd Annual International Symposium on Computer Architecture, pages 3–11, 1996.

- [6] H. Gao and H. Zhou. Adaptive information processing: An effective way to improve perceptron predictors. Journal of Instruction Level Parallelism (http://www.jilp.org/vol7), April 2005.
- [7] D. Jiménez. Fast path-based neural branch prediction. In *Proceedings of the 36th Annual IEEE/ACM International Symposium on Microarchitecture*, dec 2003.
- [8] D. Jiménez. Piecewise linear branch prediction. In Proceedings of the 32nd Annual International Symposium on Computer Architecture, june 2005.
- [9] D. Jiménez and C. Lin. Dynamic branch prediction with perceptrons. In *Proceedings* of the Seventh International Symposium on High Perform ance Computer Architecture, 2001.
- [10] D. Jiménez and C. Lin. Neural methods for dynamic branch prediction. *ACM Transactions on Computer Systems*, November 2002.
- [11] D.A. Jiménez. Idealized piecewise linear branch prediction. *Journal of Instruction Level Parallelism (http://www.jilp.org/vol7)*, April 2005.
- [12] S. Jourdan, T. Hsing, J. Stark, and Y.N. Patt. The effects of mispredicted-path execution on branch prediction structures. In *Proceedings of the International Conference on Parallel Architectures and Compilation Techniques*, October 1996.
- [13] T. Li, L.K. John, A. Sivasubramaniam, N. Vijaykrishnan, and J. Rubio. Os-aware branch prediction: Improving microprocessor control flow prediction for operating systems. *IEEE Trans. Computers*, 56(1):2–17, 2007.
- [14] G. Loh. Deconstructing the frankenpredictor for implementable branch predictors.

 Journal of Instruction Level Parallelism (http://www.jilp.org/vol?), April 2005.
- [15] G.H. Loh and D.S. Henry. Predicting conditional branches with fusion-based hybrid predictors. In *Proceedings of the 11th Conference on Parallel Architectures and Compilation Techniques*, 2002.
- [16] S. McFarling. Combining branch predictors. TN 36, DEC WRL, June 1993.
- [17] P. Michaud. A ppm-like, tag-based predictor. Journal of Instruction Level Parallelism (http://www.jilp.org/vol7), April 2005.
- [18] P. Michaud, A. Seznec, and R. Uhlig. Trading conflict and capacity aliasing in conditional branch predictors. In *Proceedings of the 24th Annual International Symposium on Computer Architecture (ISCA-97)*, June 1997.
- [19] A. Seznec. Revisiting the perceptron predictor. Technical Report PI-1620, IRISA Report, May 2004.
- [20] A. Seznec. Analysis of the o-gehl branch predictor. In *Proceedings of the 32nd Annual International Symposium on Computer Architecture*, june 2005.

THE L-TAGE BRANCH PREDICTOR

- [21] A. Seznec. Genesis of the o-gehl branch predictor. Journal of Instruction Level Parallelism (http://www.jilp.org/vol7), April 2005.
- [22] A. Seznec, S. Felix, V. Krishnan, and Y. Sazeidès. Design tradeoffs for the ev8 branch predictor. In *Proceedings of the 29th Annual International Symposium on Computer Architecture*, 2002.
- [23] A. Seznec and A. Fraboulet. Effective ahead pipelining of the instruction addres generator. In *Proceedings of the 30th Annual International Symposium on Computer Architecture*, June 2003.
- [24] A. Seznec, S. Jourdan, P. Sainrat, and P. Michaud. Multiple-block ahead branch predictors. In Architectural Support for Programming Languages and Operating Systems (ASPLOS-VII), pages 116–127, 1996.
- [25] A. Seznec and P. Michaud. A case for (partially)-tagged geometric history length predictors. *Journal of Instruction Level Parallelism (http://www.jilp.org/vol7)*, April 2006.
- [26] J.E. Smith. A study of branch prediction strategies. In *Proceedings of the 8th Annual International Symposium on Computer Architecture*, 1981.
- [27] D. Tarjan and K. Skadron. Revisiting the perceptron predictor again. Technical Report CS-2004-28, University of Virginia, September 2004.
- [28] L. N. Vintan and M. Iridon. Towards a high performance neural branch predictor. In IJCNN'99. International Joint Conference on Neural Networks. Proceedings., 1999.
- [29] C. Young, N. Gloy, and M.D. Smith. A comparative analysis of schemes for correlated branch prediction. In *Proceedings of the 22nd Annual International Symposium on Computer Architecture*, June 1995.